Author: Richard Barry Bernstein
Publisher: Springer Science & Business Media
ISBN: 1461329132
Category : Science
Languages : en
Pages : 785
Book Description
The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.
Atom - Molecule Collision Theory
Author: Richard Barry Bernstein
Publisher: Springer Science & Business Media
ISBN: 1461329132
Category : Science
Languages : en
Pages : 785
Book Description
The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.
Publisher: Springer Science & Business Media
ISBN: 1461329132
Category : Science
Languages : en
Pages : 785
Book Description
The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.
Theory of Slow Atomic Collisions
Author: E.E. Nikitin
Publisher: Springer Science & Business Media
ISBN: 364282045X
Category : Science
Languages : en
Pages : 445
Book Description
The theory of atom-molecule collisions is one of the basic fields in chemi cal physics. Its most challenging part - the dynamics of chemical reactions - is as yet unresolved, but is developing very quickly. It is here a great help to have an analysis of those parts of collision theory which are already complete, a good example being the theory of atomic collisions in process es specific to chemical physics. It has long been observed that many notions of this theory can also be applied successfully to reactive and unreactive molecular collisions. More over, atomic collisions often represent a touchstone in testing approaches proposed for the solution of more complicated problems. Research on the theory of slow atomic collisions carried out at the Moscow Institute of Chemical Physics has been based on just these ideas. A general viewpoint concerning the setting up and representation of the theory came out of these studies, and appeared to be useful in studying complicated systems as well. It underlies the representation of the theory of slow atomic colli sions in this book.
Publisher: Springer Science & Business Media
ISBN: 364282045X
Category : Science
Languages : en
Pages : 445
Book Description
The theory of atom-molecule collisions is one of the basic fields in chemi cal physics. Its most challenging part - the dynamics of chemical reactions - is as yet unresolved, but is developing very quickly. It is here a great help to have an analysis of those parts of collision theory which are already complete, a good example being the theory of atomic collisions in process es specific to chemical physics. It has long been observed that many notions of this theory can also be applied successfully to reactive and unreactive molecular collisions. More over, atomic collisions often represent a touchstone in testing approaches proposed for the solution of more complicated problems. Research on the theory of slow atomic collisions carried out at the Moscow Institute of Chemical Physics has been based on just these ideas. A general viewpoint concerning the setting up and representation of the theory came out of these studies, and appeared to be useful in studying complicated systems as well. It underlies the representation of the theory of slow atomic colli sions in this book.
R-Matrix Theory of Atomic Collisions
Author: Philip George Burke
Publisher: Springer Science & Business Media
ISBN: 3642159311
Category : Science
Languages : en
Pages : 750
Book Description
Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include the electron and photon collisions with atoms, ions and molecules which are required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.
Publisher: Springer Science & Business Media
ISBN: 3642159311
Category : Science
Languages : en
Pages : 750
Book Description
Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include the electron and photon collisions with atoms, ions and molecules which are required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.
Introduction to the Theory of Atomic and Molecular Collisions
Author: John N. Murrell
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 216
Book Description
This introduction to the scattering theory of low energy (0.1 to 1.0 eV) atomic and molecular collisions provides a strong theoretical background, maintaining a balance between classical and quantum approaches. Addresses the four main branches of the subject--elastic, inelastic and reactive scattering, and electron excitation--all supported by computational techniques.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 216
Book Description
This introduction to the scattering theory of low energy (0.1 to 1.0 eV) atomic and molecular collisions provides a strong theoretical background, maintaining a balance between classical and quantum approaches. Addresses the four main branches of the subject--elastic, inelastic and reactive scattering, and electron excitation--all supported by computational techniques.
Introduction to Atomic and Molecular Collisions
Author: R. E. Johnson
Publisher: Springer Science & Business Media
ISBN: 1468484486
Category : Science
Languages : en
Pages : 294
Book Description
In working with graduate students in engineering physics at the University of Virginia on research problems in gas kinetics, radiation biology, ion materials interactions, and upper-atmosphere chemistry, it became quite apparent that there was no satisfactory text available to these students on atomic and molecular collisions. For graduate students in physics and quantum chemistry and researchers in atomic and molecular interactions there are a large number of excellent advanced texts. However, for students in applied science, who require some knowledge and understanding of col lision phenomena, such texts are of little use. These students often have some background in modern physics and/or chemistry but lack graduate level course work in quantum mechanics. Such students, however, tend to have a good intuitive grasp of classical mechanics and have been exposed to wave phenomena in some form (e. g. , electricity and magnetism, acoustics, etc. ). Further, their requirements in using collision processes and employing models do not generally include the use of formal scattering theory, a large fraction of the content of many advanced texts. In fact, most researchers who work in the area of atomic and molecular collisions tend to pride themselves on their ability to describe results using simple theoretical models based on classical and semiclassical methods.
Publisher: Springer Science & Business Media
ISBN: 1468484486
Category : Science
Languages : en
Pages : 294
Book Description
In working with graduate students in engineering physics at the University of Virginia on research problems in gas kinetics, radiation biology, ion materials interactions, and upper-atmosphere chemistry, it became quite apparent that there was no satisfactory text available to these students on atomic and molecular collisions. For graduate students in physics and quantum chemistry and researchers in atomic and molecular interactions there are a large number of excellent advanced texts. However, for students in applied science, who require some knowledge and understanding of col lision phenomena, such texts are of little use. These students often have some background in modern physics and/or chemistry but lack graduate level course work in quantum mechanics. Such students, however, tend to have a good intuitive grasp of classical mechanics and have been exposed to wave phenomena in some form (e. g. , electricity and magnetism, acoustics, etc. ). Further, their requirements in using collision processes and employing models do not generally include the use of formal scattering theory, a large fraction of the content of many advanced texts. In fact, most researchers who work in the area of atomic and molecular collisions tend to pride themselves on their ability to describe results using simple theoretical models based on classical and semiclassical methods.
Chemistry 2e
Author: Paul Flowers
Publisher:
ISBN: 9781947172623
Category : Chemistry
Languages : en
Pages : 0
Book Description
Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.
Publisher:
ISBN: 9781947172623
Category : Chemistry
Languages : en
Pages : 0
Book Description
Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.
Fast Ion-atom and Ion-molecule Collisions
Author: Dzevad Belkic
Publisher: World Scientific
ISBN: 9814407135
Category : Science
Languages : en
Pages : 335
Book Description
The principal goal of this book is to provide state-of-the-art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this field for its most recent advances with an emphasis on the prospects for multidisciplinary applications.This book is accompanied by Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy Volume 2 - Fast Collisions of Light Ions with Matter: Charge Exchange and Ionization.
Publisher: World Scientific
ISBN: 9814407135
Category : Science
Languages : en
Pages : 335
Book Description
The principal goal of this book is to provide state-of-the-art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this field for its most recent advances with an emphasis on the prospects for multidisciplinary applications.This book is accompanied by Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy Volume 2 - Fast Collisions of Light Ions with Matter: Charge Exchange and Ionization.
Atomic and Molecular Collision Theory
Author: Franco A. Gianturco
Publisher: Springer Science & Business Media
ISBN: 1461333121
Category : Science
Languages : en
Pages : 508
Book Description
Until recently, the field of atomic and molecular collisions was left to a handful of practitioners who essentially explored it as a branch of atomic physics and gathered their experimental re sults mainly from spectroscopy measurements in bulk. But in the past ten years or so, all of this has dramatically changed, and we are now witnessing the rapid growth of a large body of research that encompasses the simplest atoms as well as the largest mole cules, that looks at a wide variety of phenomena well outside purely spectroscopic observation, and that finds applications in an unexpectedly broad range of physico-chemical and physical pro cesses. The latter are in turn surprisingly close to very important sectors of applied research, such as the modeling of molecular lasers, the study of isotope separation techniques, and the energy losses in confined plasmas, to mention just a few of them. As a consequence of this healthy state of affairs, greatly diversified research pathways have developed; however, their specialized problems are increasingly at risk of being viewed in isolation, although they are part of a major and extended branch of physics or chemistry. This is particularly true when it comes to the theory of this work -- where well-established methods and models of one subfield are practically unknown to researchers in other subfields -- and, consequently, the danger of wasteful duplication arising is quite real.
Publisher: Springer Science & Business Media
ISBN: 1461333121
Category : Science
Languages : en
Pages : 508
Book Description
Until recently, the field of atomic and molecular collisions was left to a handful of practitioners who essentially explored it as a branch of atomic physics and gathered their experimental re sults mainly from spectroscopy measurements in bulk. But in the past ten years or so, all of this has dramatically changed, and we are now witnessing the rapid growth of a large body of research that encompasses the simplest atoms as well as the largest mole cules, that looks at a wide variety of phenomena well outside purely spectroscopic observation, and that finds applications in an unexpectedly broad range of physico-chemical and physical pro cesses. The latter are in turn surprisingly close to very important sectors of applied research, such as the modeling of molecular lasers, the study of isotope separation techniques, and the energy losses in confined plasmas, to mention just a few of them. As a consequence of this healthy state of affairs, greatly diversified research pathways have developed; however, their specialized problems are increasingly at risk of being viewed in isolation, although they are part of a major and extended branch of physics or chemistry. This is particularly true when it comes to the theory of this work -- where well-established methods and models of one subfield are practically unknown to researchers in other subfields -- and, consequently, the danger of wasteful duplication arising is quite real.
Atomic and Ion Collisions in Solids and at Surfaces
Author: Roger Smith
Publisher: Cambridge University Press
ISBN: 052144022X
Category : Science
Languages : en
Pages : 323
Book Description
A 1997 monograph on simulation for condensed matter physicists, materials scientists, chemists and electrical engineers.
Publisher: Cambridge University Press
ISBN: 052144022X
Category : Science
Languages : en
Pages : 323
Book Description
A 1997 monograph on simulation for condensed matter physicists, materials scientists, chemists and electrical engineers.
Electron–Atom Collisions
Author: Maurizio Dapor
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110675374
Category : Science
Languages : en
Pages : 194
Book Description
Electron collisions with atoms, ions, and molecules have been investigated since the earliest years of the last century because of their pervasiveness and importance in fields ranging from astrophysics and plasma physics to atmospheric and condensed matter physics. Written in an accessible yet rigorous style, this book introduces the theory of electron-atom scattering in a quantum-relativistic framework.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110675374
Category : Science
Languages : en
Pages : 194
Book Description
Electron collisions with atoms, ions, and molecules have been investigated since the earliest years of the last century because of their pervasiveness and importance in fields ranging from astrophysics and plasma physics to atmospheric and condensed matter physics. Written in an accessible yet rigorous style, this book introduces the theory of electron-atom scattering in a quantum-relativistic framework.