Author: Brian C. Hall
Publisher: Springer Science & Business Media
ISBN: 1461471168
Category : Science
Languages : en
Pages : 566
Book Description
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Quantum Theory for Mathematicians
Author: Brian C. Hall
Publisher: Springer Science & Business Media
ISBN: 1461471168
Category : Science
Languages : en
Pages : 566
Book Description
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Publisher: Springer Science & Business Media
ISBN: 1461471168
Category : Science
Languages : en
Pages : 566
Book Description
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Quantum Mechanics for Mathematicians
Author: Leon Armenovich Takhtadzhi͡an
Publisher: American Mathematical Soc.
ISBN: 0821846302
Category : Mathematics
Languages : en
Pages : 410
Book Description
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Publisher: American Mathematical Soc.
ISBN: 0821846302
Category : Mathematics
Languages : en
Pages : 410
Book Description
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Mathematical Concepts of Quantum Mechanics
Author: Stephen J. Gustafson
Publisher: Springer Science & Business Media
ISBN: 3642218660
Category : Mathematics
Languages : en
Pages : 380
Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.
Publisher: Springer Science & Business Media
ISBN: 3642218660
Category : Mathematics
Languages : en
Pages : 380
Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.
Mathematics of Classical and Quantum Physics
Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
A Modern Approach to Quantum Mechanics
Author: John S. Townsend
Publisher: University Science Books
ISBN: 9781891389139
Category : Science
Languages : en
Pages : 498
Book Description
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject.
Publisher: University Science Books
ISBN: 9781891389139
Category : Science
Languages : en
Pages : 498
Book Description
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject.
The Physics of Quantum Mechanics
Author: James Binney
Publisher: Oxford University Press, USA
ISBN: 0199688575
Category : Science
Languages : en
Pages : 408
Book Description
This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.
Publisher: Oxford University Press, USA
ISBN: 0199688575
Category : Science
Languages : en
Pages : 408
Book Description
This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.
Physics for Mathematicians
Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
The Theoretical Minimum: What You Need to Know to Start Doing Physics
Author: Robert S. Obrien
Publisher: Laurentiu-Marian Ene
ISBN:
Category : Science
Languages : en
Pages : 113
Book Description
Delve into the fascinating world of theoretical physics with this comprehensive book covering topics such as quantum mechanics, general relativity, string theory, and cosmology. Explore the core concepts and developments in theoretical physics, from the Standard Model of particle physics to the search for dark matter and emerging technologies. Engage in debates surrounding multiverse theories and quantum information theory while gaining insights into the future directions of theoretical physics. Perfect for physics enthusiasts looking to expand their knowledge and understanding of the universe.
Publisher: Laurentiu-Marian Ene
ISBN:
Category : Science
Languages : en
Pages : 113
Book Description
Delve into the fascinating world of theoretical physics with this comprehensive book covering topics such as quantum mechanics, general relativity, string theory, and cosmology. Explore the core concepts and developments in theoretical physics, from the Standard Model of particle physics to the search for dark matter and emerging technologies. Engage in debates surrounding multiverse theories and quantum information theory while gaining insights into the future directions of theoretical physics. Perfect for physics enthusiasts looking to expand their knowledge and understanding of the universe.
An Introduction to Quantum Theory
Author: J Greensite
Publisher: Myprint
ISBN: 9780750318396
Category :
Languages : en
Pages : 532
Book Description
Publisher: Myprint
ISBN: 9780750318396
Category :
Languages : en
Pages : 532
Book Description