Author: Phillip I. Good
Publisher: John Wiley & Sons
ISBN: 0471741760
Category : Mathematics
Languages : en
Pages : 245
Book Description
Learn statistical methods quickly and easily with the discovery method With its emphasis on the discovery method, this publication encourages readers to discover solutions on their own rather than simply copy answers or apply a formula by rote. Readers quickly master and learn to apply statistical methods, such as bootstrap, decision trees, t-test, and permutations to better characterize, report, test, and classify their research findings. In addition to traditional methods, specialized methods are covered, allowing readers to select and apply the most effective method for their research, including: * Tests and estimation procedures for one, two, and multiple samples * Model building * Multivariate analysis * Complex experimental design Throughout the text, Microsoft Office Excel(r) is used to illustrate new concepts and assist readers in completing exercises. An Excel Primer is included as an Appendix for readers who need to learn or brush up on their Excel skills. Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. All the pedagogical tools needed to facilitate quick learning are provided: * More than 100 exercises scattered throughout the text stimulate readers' thinking and actively engage them in applying their newfound skills * Companion FTP site provides access to all data sets discussed in the text * An Instructor's Manual is available upon request from the publisher * Dozens of thought-provoking questions in the final chapter assist readers in applying statistics to solve real-life problems * Helpful appendices include an index to Excel and Excel add-in functions This text serves as an excellent introduction to statistics for students in all disciplines. The accessible style and focus on real-life problem solving are perfectly suited to both students and practitioners.
Introduction to Statistics Through Resampling Methods and Microsoft Office Excel
Author: Phillip I. Good
Publisher: John Wiley & Sons
ISBN: 0471741760
Category : Mathematics
Languages : en
Pages : 245
Book Description
Learn statistical methods quickly and easily with the discovery method With its emphasis on the discovery method, this publication encourages readers to discover solutions on their own rather than simply copy answers or apply a formula by rote. Readers quickly master and learn to apply statistical methods, such as bootstrap, decision trees, t-test, and permutations to better characterize, report, test, and classify their research findings. In addition to traditional methods, specialized methods are covered, allowing readers to select and apply the most effective method for their research, including: * Tests and estimation procedures for one, two, and multiple samples * Model building * Multivariate analysis * Complex experimental design Throughout the text, Microsoft Office Excel(r) is used to illustrate new concepts and assist readers in completing exercises. An Excel Primer is included as an Appendix for readers who need to learn or brush up on their Excel skills. Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. All the pedagogical tools needed to facilitate quick learning are provided: * More than 100 exercises scattered throughout the text stimulate readers' thinking and actively engage them in applying their newfound skills * Companion FTP site provides access to all data sets discussed in the text * An Instructor's Manual is available upon request from the publisher * Dozens of thought-provoking questions in the final chapter assist readers in applying statistics to solve real-life problems * Helpful appendices include an index to Excel and Excel add-in functions This text serves as an excellent introduction to statistics for students in all disciplines. The accessible style and focus on real-life problem solving are perfectly suited to both students and practitioners.
Publisher: John Wiley & Sons
ISBN: 0471741760
Category : Mathematics
Languages : en
Pages : 245
Book Description
Learn statistical methods quickly and easily with the discovery method With its emphasis on the discovery method, this publication encourages readers to discover solutions on their own rather than simply copy answers or apply a formula by rote. Readers quickly master and learn to apply statistical methods, such as bootstrap, decision trees, t-test, and permutations to better characterize, report, test, and classify their research findings. In addition to traditional methods, specialized methods are covered, allowing readers to select and apply the most effective method for their research, including: * Tests and estimation procedures for one, two, and multiple samples * Model building * Multivariate analysis * Complex experimental design Throughout the text, Microsoft Office Excel(r) is used to illustrate new concepts and assist readers in completing exercises. An Excel Primer is included as an Appendix for readers who need to learn or brush up on their Excel skills. Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. All the pedagogical tools needed to facilitate quick learning are provided: * More than 100 exercises scattered throughout the text stimulate readers' thinking and actively engage them in applying their newfound skills * Companion FTP site provides access to all data sets discussed in the text * An Instructor's Manual is available upon request from the publisher * Dozens of thought-provoking questions in the final chapter assist readers in applying statistics to solve real-life problems * Helpful appendices include an index to Excel and Excel add-in functions This text serves as an excellent introduction to statistics for students in all disciplines. The accessible style and focus on real-life problem solving are perfectly suited to both students and practitioners.
Introduction to Statistics Through Resampling Methods and R/S-PLUS
Author: Phillip I. Good
Publisher: John Wiley & Sons
ISBN: 0471722499
Category : Mathematics
Languages : en
Pages : 244
Book Description
Stimulate learning through discovery With its emphasis on the discovery method, this book allows readers to discover solutions on their own rather than simply copy answers or apply a formula by rote. Readers will quickly master and learn to apply statistical methods, such as bootstrap, decision trees, and permutations, to better characterize, report, test, and classify their research findings. In addition to traditional methods, specialized methods are covered, allowing readers to select and apply the most effective method for their research, including: Tests and estimation procedures for one, two, and multiple samples Model building Multivariate analysis Complex experimental design Throughout the text, the R programming language is used to illustrate new concepts and assist readers in completing exercises. Readers may download the freely available R programming language from the Internet or take advantage of the menu-driven S-PLUS® program. Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. All the pedagogical tools needed to facilitate quick learning are provided: More than two hundred exercises scattered throughout the text stimulate readers' thinking and actively engage them in applying their newfound skills Companion FTP site provides access to all data sets and programs discussed in the text Dozens of thought-provoking questions in the final chapter, Problem Solving, assist readers in applying statistics to address real-life problems Instructor's manual provides answers to exercises Helpful appendices include an introduction to S-PLUS® features This text serves as an excellent introduction to statistics for students in all disciplines. The accessible style and focus on real-life problem solving are perfectly suited for both students and practitioners.
Publisher: John Wiley & Sons
ISBN: 0471722499
Category : Mathematics
Languages : en
Pages : 244
Book Description
Stimulate learning through discovery With its emphasis on the discovery method, this book allows readers to discover solutions on their own rather than simply copy answers or apply a formula by rote. Readers will quickly master and learn to apply statistical methods, such as bootstrap, decision trees, and permutations, to better characterize, report, test, and classify their research findings. In addition to traditional methods, specialized methods are covered, allowing readers to select and apply the most effective method for their research, including: Tests and estimation procedures for one, two, and multiple samples Model building Multivariate analysis Complex experimental design Throughout the text, the R programming language is used to illustrate new concepts and assist readers in completing exercises. Readers may download the freely available R programming language from the Internet or take advantage of the menu-driven S-PLUS® program. Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. All the pedagogical tools needed to facilitate quick learning are provided: More than two hundred exercises scattered throughout the text stimulate readers' thinking and actively engage them in applying their newfound skills Companion FTP site provides access to all data sets and programs discussed in the text Dozens of thought-provoking questions in the final chapter, Problem Solving, assist readers in applying statistics to address real-life problems Instructor's manual provides answers to exercises Helpful appendices include an introduction to S-PLUS® features This text serves as an excellent introduction to statistics for students in all disciplines. The accessible style and focus on real-life problem solving are perfectly suited for both students and practitioners.
Politics and the Ruling Group in Putin's Russia
Author: S. White
Publisher: Springer
ISBN: 0230583067
Category : Political Science
Languages : en
Pages : 190
Book Description
There is little consensus about the nature of the political system that has emerged during the Putin presidency. This collection considers the issues arising in this connection, focusing more closely on institutions such as the presidency and the security police, and on the socioeconomic dimensions of political power.
Publisher: Springer
ISBN: 0230583067
Category : Political Science
Languages : en
Pages : 190
Book Description
There is little consensus about the nature of the political system that has emerged during the Putin presidency. This collection considers the issues arising in this connection, focusing more closely on institutions such as the presidency and the security police, and on the socioeconomic dimensions of political power.
Data Mining for Business Analytics
Author: Galit Shmueli
Publisher: John Wiley & Sons
ISBN: 111954985X
Category : Mathematics
Languages : en
Pages : 608
Book Description
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Publisher: John Wiley & Sons
ISBN: 111954985X
Category : Mathematics
Languages : en
Pages : 608
Book Description
Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R
Common Errors in Statistics (and How to Avoid Them), Third Edition and Introduction to Statistics Through Resampling Methods and Microsoft Office Excel Set
Author: Phillip I. Good
Publisher: Wiley
ISBN: 9780470555897
Category : Mathematics
Languages : en
Pages : 504
Book Description
This set features: Common Errors in Statistics (and How to Avoid Them), Third Edition by Phillip I. Good and James W. Hardin (978-0-470-48798-6)and Introduction to Statistics Through Resampling Methods and Microsoft Office Excel by Phillip I. Good (978-0-471-73191-7)
Publisher: Wiley
ISBN: 9780470555897
Category : Mathematics
Languages : en
Pages : 504
Book Description
This set features: Common Errors in Statistics (and How to Avoid Them), Third Edition by Phillip I. Good and James W. Hardin (978-0-470-48798-6)and Introduction to Statistics Through Resampling Methods and Microsoft Office Excel by Phillip I. Good (978-0-471-73191-7)
Introductory Statistics and Analytics
Author: Peter C. Bruce
Publisher: John Wiley & Sons
ISBN: 1118881338
Category : Mathematics
Languages : en
Pages : 320
Book Description
Concise, thoroughly class-tested primer that features basic statistical concepts in the concepts in the context of analytics, resampling, and the bootstrap A uniquely developed presentation of key statistical topics, Introductory Statistics and Analytics: A Resampling Perspective provides an accessible approach to statistical analytics, resampling, and the bootstrap for readers with various levels of exposure to basic probability and statistics. Originally class-tested at one of the first online learning companies in the discipline, www.statistics.com, the book primarily focuses on applications of statistical concepts developed via resampling, with a background discussion of mathematical theory. This feature stresses statistical literacy and understanding, which demonstrates the fundamental basis for statistical inference and demystifies traditional formulas. The book begins with illustrations that have the essential statistical topics interwoven throughout before moving on to demonstrate the proper design of studies. Meeting all of the Guidelines for Assessment and Instruction in Statistics Education (GAISE) requirements for an introductory statistics course, Introductory Statistics and Analytics: A Resampling Perspective also includes: Over 300 “Try It Yourself” exercises and intermittent practice questions, which challenge readers at multiple levels to investigate and explore key statistical concepts Numerous interactive links designed to provide solutions to exercises and further information on crucial concepts Linkages that connect statistics to the rapidly growing field of data science Multiple discussions of various software systems, such as Microsoft Office Excel®, StatCrunch, and R, to develop and analyze data Areas of concern and/or contrasting points-of-view indicated through the use of “Caution” icons Introductory Statistics and Analytics: A Resampling Perspective is an excellent primary textbook for courses in preliminary statistics as well as a supplement for courses in upper-level statistics and related fields, such as biostatistics and econometrics. The book is also a general reference for readers interested in revisiting the value of statistics.
Publisher: John Wiley & Sons
ISBN: 1118881338
Category : Mathematics
Languages : en
Pages : 320
Book Description
Concise, thoroughly class-tested primer that features basic statistical concepts in the concepts in the context of analytics, resampling, and the bootstrap A uniquely developed presentation of key statistical topics, Introductory Statistics and Analytics: A Resampling Perspective provides an accessible approach to statistical analytics, resampling, and the bootstrap for readers with various levels of exposure to basic probability and statistics. Originally class-tested at one of the first online learning companies in the discipline, www.statistics.com, the book primarily focuses on applications of statistical concepts developed via resampling, with a background discussion of mathematical theory. This feature stresses statistical literacy and understanding, which demonstrates the fundamental basis for statistical inference and demystifies traditional formulas. The book begins with illustrations that have the essential statistical topics interwoven throughout before moving on to demonstrate the proper design of studies. Meeting all of the Guidelines for Assessment and Instruction in Statistics Education (GAISE) requirements for an introductory statistics course, Introductory Statistics and Analytics: A Resampling Perspective also includes: Over 300 “Try It Yourself” exercises and intermittent practice questions, which challenge readers at multiple levels to investigate and explore key statistical concepts Numerous interactive links designed to provide solutions to exercises and further information on crucial concepts Linkages that connect statistics to the rapidly growing field of data science Multiple discussions of various software systems, such as Microsoft Office Excel®, StatCrunch, and R, to develop and analyze data Areas of concern and/or contrasting points-of-view indicated through the use of “Caution” icons Introductory Statistics and Analytics: A Resampling Perspective is an excellent primary textbook for courses in preliminary statistics as well as a supplement for courses in upper-level statistics and related fields, such as biostatistics and econometrics. The book is also a general reference for readers interested in revisiting the value of statistics.
Handbook of Motivation at School
Author: Kathryn R. Wentzel
Publisher: Routledge
ISBN: 1135592926
Category : Education
Languages : en
Pages : 701
Book Description
The Handbook of Motivation at School presents the first comprehensive and integrated compilation of theory and research on children’s motivation at school. It covers the major theoretical perspectives in the field as well as their application to instruction, learning, and social adjustment at school. Key Features: Comprehensive – no other book provides such a comprehensive overview of theory and research on children’s motivation at school. Theoretical & Applied – the book provides a review of current motivation theories by the developers of those theories as well as attention to the application of motivation theory and research in classrooms and schools. Chapter Structure – chapters within each section follow a similar structure so that there is uniformity across chapters. Commentaries – each section ends with a commentary that provides clear directions for future research.
Publisher: Routledge
ISBN: 1135592926
Category : Education
Languages : en
Pages : 701
Book Description
The Handbook of Motivation at School presents the first comprehensive and integrated compilation of theory and research on children’s motivation at school. It covers the major theoretical perspectives in the field as well as their application to instruction, learning, and social adjustment at school. Key Features: Comprehensive – no other book provides such a comprehensive overview of theory and research on children’s motivation at school. Theoretical & Applied – the book provides a review of current motivation theories by the developers of those theories as well as attention to the application of motivation theory and research in classrooms and schools. Chapter Structure – chapters within each section follow a similar structure so that there is uniformity across chapters. Commentaries – each section ends with a commentary that provides clear directions for future research.
American Book Publishing Record
Mathematical Statistics with Resampling and R
Author: Laura M. Chihara
Publisher: John Wiley & Sons
ISBN: 1119416523
Category : Mathematics
Languages : en
Pages : 557
Book Description
This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on "Google Interview Questions" that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.
Publisher: John Wiley & Sons
ISBN: 1119416523
Category : Mathematics
Languages : en
Pages : 557
Book Description
This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on "Google Interview Questions" that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.
Permutation Tests
Author: Phillip Good
Publisher: Springer Science & Business Media
ISBN: 1475723466
Category : Mathematics
Languages : en
Pages : 238
Book Description
A step-by-step guide to the application of permutation tests in biology, medicine, science, and engineering. The intuitive and informal style makes this manual ideally suitable for students and researchers approaching these methods for the first time. In particular, it shows how to handle the problems of missing and censored data, nonresponders, after-the-fact covariates, and outliers.
Publisher: Springer Science & Business Media
ISBN: 1475723466
Category : Mathematics
Languages : en
Pages : 238
Book Description
A step-by-step guide to the application of permutation tests in biology, medicine, science, and engineering. The intuitive and informal style makes this manual ideally suitable for students and researchers approaching these methods for the first time. In particular, it shows how to handle the problems of missing and censored data, nonresponders, after-the-fact covariates, and outliers.