Author: Chun Y. Seow
Publisher: Cambridge Scholars Publishing
ISBN: 152756228X
Category : Medical
Languages : en
Pages : 189
Book Description
This second edition is an updated version of an introductory level textbook intended for students who are interested in understanding the mechanical properties of smooth muscle. Compared with skeletal and cardiac muscles, smooth muscle is the least understood in terms of its contraction mechanism and the structure of its contractile apparatus. Nevertheless, it is an important tissue that is vital in many organ functions, such as blood pressure control, intestinal peristalsis, and the emptying of the bladder. Dysfunction of the muscle has been implicated in many diseases such as high blood pressure, asthma, and overactive bladders. This is the only book-length treatment of functional models of a variety of smooth muscle behaviors with their corresponding mathematical descriptions, and offers an easy-to-follow, step-by-step mathematical derivation that will help students to appreciate the muscle cell as a fine-tuned aggregate of mechanisms governed by the fundamental laws of physics. In addition to providing a detailed description of the known subcellular structure and mechanical function of the contractile apparatus of smooth muscle, it also covers experimentation techniques, instrumentation, and data analysis. The book is a must-have information source for anyone interested in smooth muscle cell ultrastructure, physiology, biochemistry, and pharmacology.
An Introduction to Smooth Muscle Mechanics (2nd Edition)
Author: Chun Y. Seow
Publisher: Cambridge Scholars Publishing
ISBN: 152756228X
Category : Medical
Languages : en
Pages : 189
Book Description
This second edition is an updated version of an introductory level textbook intended for students who are interested in understanding the mechanical properties of smooth muscle. Compared with skeletal and cardiac muscles, smooth muscle is the least understood in terms of its contraction mechanism and the structure of its contractile apparatus. Nevertheless, it is an important tissue that is vital in many organ functions, such as blood pressure control, intestinal peristalsis, and the emptying of the bladder. Dysfunction of the muscle has been implicated in many diseases such as high blood pressure, asthma, and overactive bladders. This is the only book-length treatment of functional models of a variety of smooth muscle behaviors with their corresponding mathematical descriptions, and offers an easy-to-follow, step-by-step mathematical derivation that will help students to appreciate the muscle cell as a fine-tuned aggregate of mechanisms governed by the fundamental laws of physics. In addition to providing a detailed description of the known subcellular structure and mechanical function of the contractile apparatus of smooth muscle, it also covers experimentation techniques, instrumentation, and data analysis. The book is a must-have information source for anyone interested in smooth muscle cell ultrastructure, physiology, biochemistry, and pharmacology.
Publisher: Cambridge Scholars Publishing
ISBN: 152756228X
Category : Medical
Languages : en
Pages : 189
Book Description
This second edition is an updated version of an introductory level textbook intended for students who are interested in understanding the mechanical properties of smooth muscle. Compared with skeletal and cardiac muscles, smooth muscle is the least understood in terms of its contraction mechanism and the structure of its contractile apparatus. Nevertheless, it is an important tissue that is vital in many organ functions, such as blood pressure control, intestinal peristalsis, and the emptying of the bladder. Dysfunction of the muscle has been implicated in many diseases such as high blood pressure, asthma, and overactive bladders. This is the only book-length treatment of functional models of a variety of smooth muscle behaviors with their corresponding mathematical descriptions, and offers an easy-to-follow, step-by-step mathematical derivation that will help students to appreciate the muscle cell as a fine-tuned aggregate of mechanisms governed by the fundamental laws of physics. In addition to providing a detailed description of the known subcellular structure and mechanical function of the contractile apparatus of smooth muscle, it also covers experimentation techniques, instrumentation, and data analysis. The book is a must-have information source for anyone interested in smooth muscle cell ultrastructure, physiology, biochemistry, and pharmacology.
Cellular Aspects of Smooth Muscle Function
Author: C. Y. Kao
Publisher: Cambridge University Press
ISBN: 9780521482103
Category : Medical
Languages : en
Pages : 324
Book Description
Smooth muscles line many internal organs and, in general, are involved in moving fluids and slurry around the body. They are controlled by the action of hormones, by nervous stimulation, and can be influenced by drugs. This 1997 book provides a review of our understanding of smooth muscle and integrates molecular, cellular and physiological information with tissue and anatomical studies. Well-known researchers have written chapters giving detailed reviews of our current knowledge of the biochemistry, pharmacology, physiology and anatomy of smooth muscle. In particular, they cover the seven most important areas of smooth muscle function including morphology, electrophysiology, mechanisms of electromechanical and pharmacomechanical coupling, calcium homeostasis, signal transduction, mechanics of contraction, and the contractile proteins. All those interested in muscular contraction will find this book worthwhile, whether they are biochemists, physiologists, or cell biologists.
Publisher: Cambridge University Press
ISBN: 9780521482103
Category : Medical
Languages : en
Pages : 324
Book Description
Smooth muscles line many internal organs and, in general, are involved in moving fluids and slurry around the body. They are controlled by the action of hormones, by nervous stimulation, and can be influenced by drugs. This 1997 book provides a review of our understanding of smooth muscle and integrates molecular, cellular and physiological information with tissue and anatomical studies. Well-known researchers have written chapters giving detailed reviews of our current knowledge of the biochemistry, pharmacology, physiology and anatomy of smooth muscle. In particular, they cover the seven most important areas of smooth muscle function including morphology, electrophysiology, mechanisms of electromechanical and pharmacomechanical coupling, calcium homeostasis, signal transduction, mechanics of contraction, and the contractile proteins. All those interested in muscular contraction will find this book worthwhile, whether they are biochemists, physiologists, or cell biologists.
Anatomy & Physiology
Author: Lindsay Biga
Publisher:
ISBN: 9781955101158
Category :
Languages : en
Pages :
Book Description
A version of the OpenStax text
Publisher:
ISBN: 9781955101158
Category :
Languages : en
Pages :
Book Description
A version of the OpenStax text
Anatomy and Physiology
Author: J. Gordon Betts
Publisher:
ISBN: 9781947172807
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781947172807
Category :
Languages : en
Pages : 0
Book Description
Introductory Biomechanics
Author: C. Ross Ethier
Publisher: Cambridge University Press
ISBN: 1139461826
Category : Technology & Engineering
Languages : en
Pages : 10
Book Description
Introductory Biomechanics is a new, integrated text written specifically for engineering students. It provides a broad overview of this important branch of the rapidly growing field of bioengineering. A wide selection of topics is presented, ranging from the mechanics of single cells to the dynamics of human movement. No prior biological knowledge is assumed and in each chapter, the relevant anatomy and physiology are first described. The biological system is then analyzed from a mechanical viewpoint by reducing it to its essential elements, using the laws of mechanics and then tying mechanical insights back to biological function. This integrated approach provides students with a deeper understanding of both the mechanics and the biology than from qualitative study alone. The text is supported by a wealth of illustrations, tables and examples, a large selection of suitable problems and hundreds of current references, making it an essential textbook for any biomechanics course.
Publisher: Cambridge University Press
ISBN: 1139461826
Category : Technology & Engineering
Languages : en
Pages : 10
Book Description
Introductory Biomechanics is a new, integrated text written specifically for engineering students. It provides a broad overview of this important branch of the rapidly growing field of bioengineering. A wide selection of topics is presented, ranging from the mechanics of single cells to the dynamics of human movement. No prior biological knowledge is assumed and in each chapter, the relevant anatomy and physiology are first described. The biological system is then analyzed from a mechanical viewpoint by reducing it to its essential elements, using the laws of mechanics and then tying mechanical insights back to biological function. This integrated approach provides students with a deeper understanding of both the mechanics and the biology than from qualitative study alone. The text is supported by a wealth of illustrations, tables and examples, a large selection of suitable problems and hundreds of current references, making it an essential textbook for any biomechanics course.
Mechanisms of Vascular Disease
Author: Robert Fitridge
Publisher: University of Adelaide Press
ISBN: 1922064009
Category : Medical
Languages : en
Pages : 589
Book Description
New updated edition first published with Cambridge University Press. This new edition includes 29 chapters on topics as diverse as pathophysiology of atherosclerosis, vascular haemodynamics, haemostasis, thrombophilia and post-amputation pain syndromes.
Publisher: University of Adelaide Press
ISBN: 1922064009
Category : Medical
Languages : en
Pages : 589
Book Description
New updated edition first published with Cambridge University Press. This new edition includes 29 chapters on topics as diverse as pathophysiology of atherosclerosis, vascular haemodynamics, haemostasis, thrombophilia and post-amputation pain syndromes.
Biomechanics of Skeletal Muscles
Author: Vladimir M. Zatsiorsky
Publisher: Human Kinetics
ISBN: 1492582107
Category : Science
Languages : en
Pages : 543
Book Description
Richly illustrated and presented in clear, concise language, Biomechanics of Skeletal Muscles is an essential resource for those seeking advanced knowledge of muscle biomechanics. Written by leading experts Vladimir Zatsiorsky and Boris Prilutsky, the text is one of the few to look at muscle biomechanics in its entirety—from muscle fibers to muscle coordination—making it a unique contribution to the field. Using a blend of experimental evidence and mechanical models, Biomechanics of Skeletal Muscles provides an explanation of whole muscle biomechanics at work in the body in motion. The book first addresses the mechanical behavior of single muscles—from the sarcomere level up to the entire muscle. The architecture of human muscle, the mechanical properties of tendons and passive muscles, the biomechanics of active muscles, and the force transmission and shock absorption aspects of muscle are explored in detail. Next, the various issues of muscle functioning during human motion are addressed. The transformation from muscle force to joint movements, two-joint muscle function, eccentric muscle action, and muscle coordination are analyzed. This advanced text assumes some knowledge of algebra and calculus; however, the emphasis is on understanding physical concepts. Higher-level computational descriptions are placed in special sections in the later chapters of the book, allowing those with a strong mathematical background to explore this material in more detail. Readers who choose to skip over these sections will find that the book still provides a strong conceptual understanding of advanced topics. Biomechanics of Skeletal Muscles also contains numerous special features that facilitate readers’ comprehension of the topics presented. More than 300 illustrations and accompanying explanations provide an extensive visual representation of muscle biomechanics. Refresher sidebars offer brief reminders of mathematical and biomechanical concepts, and From the Literature sidebars present practical examples that illustrate the concepts under discussion. Chapter summaries and review questions provide an opportunity for reflection and self-testing, and reference lists at the end of each chapter provide a starting point for further study. Biomechanics of Skeletal Muscles offers a thorough explanation of whole muscle biomechanics, bridging the gap between foundational biomechanics texts and scientific literature. With the information found in this text, readers can prepare themselves to better understand the latest in cutting-edge research. Biomechanics of Skeletal Muscles is the third volume in the Biomechanics of Human Motion series. Advanced readers in human movement science gain a comprehensive understanding of the biomechanics of human motion as presented by one of the world’s foremost researchers on the subject, Dr. Vladimir Zatsiorsky. The series begins with Kinematics of Human Motion, which details human body positioning and movement in three dimensions; continues with Kinetics of Human Motion, which examines the forces that create body motion and their effects; and concludes with Biomechanics of Skeletal Muscles, which explains the action of the biological motors that exert force and produce mechanical work during human movement.
Publisher: Human Kinetics
ISBN: 1492582107
Category : Science
Languages : en
Pages : 543
Book Description
Richly illustrated and presented in clear, concise language, Biomechanics of Skeletal Muscles is an essential resource for those seeking advanced knowledge of muscle biomechanics. Written by leading experts Vladimir Zatsiorsky and Boris Prilutsky, the text is one of the few to look at muscle biomechanics in its entirety—from muscle fibers to muscle coordination—making it a unique contribution to the field. Using a blend of experimental evidence and mechanical models, Biomechanics of Skeletal Muscles provides an explanation of whole muscle biomechanics at work in the body in motion. The book first addresses the mechanical behavior of single muscles—from the sarcomere level up to the entire muscle. The architecture of human muscle, the mechanical properties of tendons and passive muscles, the biomechanics of active muscles, and the force transmission and shock absorption aspects of muscle are explored in detail. Next, the various issues of muscle functioning during human motion are addressed. The transformation from muscle force to joint movements, two-joint muscle function, eccentric muscle action, and muscle coordination are analyzed. This advanced text assumes some knowledge of algebra and calculus; however, the emphasis is on understanding physical concepts. Higher-level computational descriptions are placed in special sections in the later chapters of the book, allowing those with a strong mathematical background to explore this material in more detail. Readers who choose to skip over these sections will find that the book still provides a strong conceptual understanding of advanced topics. Biomechanics of Skeletal Muscles also contains numerous special features that facilitate readers’ comprehension of the topics presented. More than 300 illustrations and accompanying explanations provide an extensive visual representation of muscle biomechanics. Refresher sidebars offer brief reminders of mathematical and biomechanical concepts, and From the Literature sidebars present practical examples that illustrate the concepts under discussion. Chapter summaries and review questions provide an opportunity for reflection and self-testing, and reference lists at the end of each chapter provide a starting point for further study. Biomechanics of Skeletal Muscles offers a thorough explanation of whole muscle biomechanics, bridging the gap between foundational biomechanics texts and scientific literature. With the information found in this text, readers can prepare themselves to better understand the latest in cutting-edge research. Biomechanics of Skeletal Muscles is the third volume in the Biomechanics of Human Motion series. Advanced readers in human movement science gain a comprehensive understanding of the biomechanics of human motion as presented by one of the world’s foremost researchers on the subject, Dr. Vladimir Zatsiorsky. The series begins with Kinematics of Human Motion, which details human body positioning and movement in three dimensions; continues with Kinetics of Human Motion, which examines the forces that create body motion and their effects; and concludes with Biomechanics of Skeletal Muscles, which explains the action of the biological motors that exert force and produce mechanical work during human movement.
Biomechanics
Author: Y. C. Fung
Publisher: Springer Science & Business Media
ISBN: 1475717520
Category : Medical
Languages : en
Pages : 443
Book Description
The motivation for writing aseries ofbooks on biomechanics is to bring this rapidly developing subject to students of bioengineering, physiology, and mechanics. In the last decade biomechanics has become a recognized disci pline offered in virtually all universities. Yet there is no adequate textbook for instruction; neither is there a treatise with sufficiently broad coverage. A few books bearing the title of biomechanics are too elementary, others are too specialized. I have long feIt a need for a set of books that will inform students of the physiological and medical applications of biomechanics, and at the same time develop their training in mechanics. We cannot assume that all students come to biomechanics already fully trained in fluid and solid mechanics; their knowledge in these subjects has to be developed as the course proceeds. The scheme adopted in the present series is as follows. First, some basic training in mechanics, to a level about equivalent to the first seven chapters of the author's A First Course in Continuum Mechanics (Prentice-Hall,lnc. 1977), is assumed. We then present some essential parts of biomechanics from the point of view of bioengineering, physiology, and medical applications. In the meantime, mechanics is developed through a sequence of problems and examples. The main text reads like physiology, while the exercises are planned like a mechanics textbook. The instructor may fil1 a dual role: teaching an essential branch of life science, and gradually developing the student's knowledge in mechanics.
Publisher: Springer Science & Business Media
ISBN: 1475717520
Category : Medical
Languages : en
Pages : 443
Book Description
The motivation for writing aseries ofbooks on biomechanics is to bring this rapidly developing subject to students of bioengineering, physiology, and mechanics. In the last decade biomechanics has become a recognized disci pline offered in virtually all universities. Yet there is no adequate textbook for instruction; neither is there a treatise with sufficiently broad coverage. A few books bearing the title of biomechanics are too elementary, others are too specialized. I have long feIt a need for a set of books that will inform students of the physiological and medical applications of biomechanics, and at the same time develop their training in mechanics. We cannot assume that all students come to biomechanics already fully trained in fluid and solid mechanics; their knowledge in these subjects has to be developed as the course proceeds. The scheme adopted in the present series is as follows. First, some basic training in mechanics, to a level about equivalent to the first seven chapters of the author's A First Course in Continuum Mechanics (Prentice-Hall,lnc. 1977), is assumed. We then present some essential parts of biomechanics from the point of view of bioengineering, physiology, and medical applications. In the meantime, mechanics is developed through a sequence of problems and examples. The main text reads like physiology, while the exercises are planned like a mechanics textbook. The instructor may fil1 a dual role: teaching an essential branch of life science, and gradually developing the student's knowledge in mechanics.
Muscle Atrophy
Author: Junjie Xiao
Publisher: Springer
ISBN: 9811314357
Category : Science
Languages : en
Pages : 618
Book Description
The book addresses the development of muscle atrophy, which can be caused by denervation, disuse, excessive fasting, aging, and a variety of diseases including heart failure, chronic kidney diseases and cancers. Muscle atrophy reduces quality of life and increases morbidity and mortality worldwide. The book is divided into five parts, the first of which describes the general aspects of muscle atrophy including its characteristics, related economic and health burdens, and the current clinical therapy. Secondly, basic aspects of muscle atrophy including the composition, structure and function of skeletal muscle, muscle changes in response to atrophy, and experimental models are summarized. Thirdly, the book reviews the molecular mechanisms of muscle atrophy, including protein degradation and synthesis pathways, noncoding RNAs, inflammatory signaling, oxidative stress, mitochondria signaling, etc. Fourthly, it highlights the pathophysiological mechanisms of muscle atrophy in aging and disease. The book’s fifth and final part covers the diagnosis, treatment strategies, promising agents and future prospects of muscle atrophy. The book will appeal to a broad readership including scientists, undergraduate and graduate students in medicine and cell biology.
Publisher: Springer
ISBN: 9811314357
Category : Science
Languages : en
Pages : 618
Book Description
The book addresses the development of muscle atrophy, which can be caused by denervation, disuse, excessive fasting, aging, and a variety of diseases including heart failure, chronic kidney diseases and cancers. Muscle atrophy reduces quality of life and increases morbidity and mortality worldwide. The book is divided into five parts, the first of which describes the general aspects of muscle atrophy including its characteristics, related economic and health burdens, and the current clinical therapy. Secondly, basic aspects of muscle atrophy including the composition, structure and function of skeletal muscle, muscle changes in response to atrophy, and experimental models are summarized. Thirdly, the book reviews the molecular mechanisms of muscle atrophy, including protein degradation and synthesis pathways, noncoding RNAs, inflammatory signaling, oxidative stress, mitochondria signaling, etc. Fourthly, it highlights the pathophysiological mechanisms of muscle atrophy in aging and disease. The book’s fifth and final part covers the diagnosis, treatment strategies, promising agents and future prospects of muscle atrophy. The book will appeal to a broad readership including scientists, undergraduate and graduate students in medicine and cell biology.
An Introduction to Biomechanics
Author: Jay D. Humphrey
Publisher: Springer Science & Business Media
ISBN: 1489903259
Category : Science
Languages : en
Pages : 642
Book Description
Designed to meet the needs of undergraduate students, "Introduction to Biomechanics" takes the fresh approach of combining the viewpoints of both a well-respected teacher and a successful student. With an eye toward practicality without loss of depth of instruction, this book seeks to explain the fundamental concepts of biomechanics. With the accompanying web site providing models, sample problems, review questions and more, Introduction to Biomechanics provides students with the full range of instructional material for this complex and dynamic field.
Publisher: Springer Science & Business Media
ISBN: 1489903259
Category : Science
Languages : en
Pages : 642
Book Description
Designed to meet the needs of undergraduate students, "Introduction to Biomechanics" takes the fresh approach of combining the viewpoints of both a well-respected teacher and a successful student. With an eye toward practicality without loss of depth of instruction, this book seeks to explain the fundamental concepts of biomechanics. With the accompanying web site providing models, sample problems, review questions and more, Introduction to Biomechanics provides students with the full range of instructional material for this complex and dynamic field.