Computational Neuroscience and Cognitive Modelling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Neuroscience and Cognitive Modelling PDF full book. Access full book title Computational Neuroscience and Cognitive Modelling by Britt Anderson. Download full books in PDF and EPUB format.

Computational Neuroscience and Cognitive Modelling

Computational Neuroscience and Cognitive Modelling PDF Author: Britt Anderson
Publisher: SAGE
ISBN: 1446297373
Category : Psychology
Languages : en
Pages : 241

Book Description
"For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.

Computational Neuroscience and Cognitive Modelling

Computational Neuroscience and Cognitive Modelling PDF Author: Britt Anderson
Publisher: SAGE
ISBN: 1446297373
Category : Psychology
Languages : en
Pages : 241

Book Description
"For the neuroscientist or psychologist who cringes at the sight of mathematical formulae and whose eyes glaze over at terms like differential equations, linear algebra, vectors, matrices, Bayes’ rule, and Boolean logic, this book just might be the therapy needed." - Anjan Chatterjee, Professor of Neurology, University of Pennsylvania "Anderson provides a gentle introduction to computational aspects of psychological science, managing to respect the reader’s intelligence while also being completely unintimidating. Using carefully-selected computational demonstrations, he guides students through a wide array of important approaches and tools, with little in the way of prerequisites...I recommend it with enthusiasm." - Asohan Amarasingham, The City University of New York This unique, self-contained and accessible textbook provides an introduction to computational modelling neuroscience accessible to readers with little or no background in computing or mathematics. Organized into thematic sections, the book spans from modelling integrate and firing neurons to playing the game Rock, Paper, Scissors in ACT-R. This non-technical guide shows how basic knowledge and modern computers can be combined for interesting simulations, progressing from early exercises utilizing spreadsheets, to simple programs in Python. Key Features include: Interleaved chapters that show how traditional computing constructs are simply disguised versions of the spread sheet methods. Mathematical facts and notation needed to understand the modelling methods are presented at their most basic and are interleaved with biographical and historical notes for contex. Numerous worked examples to demonstrate the themes and procedures of cognitive modelling. An excellent text for postgraduate students taking courses in research methods, computational neuroscience, computational modelling, cognitive science and neuroscience. It will be especially valuable to psychology students.

Gateway to Memory

Gateway to Memory PDF Author: Mark A. Gluck
Publisher: MIT Press
ISBN: 9780262571524
Category : Medical
Languages : en
Pages : 470

Book Description
This book is for students and researchers who have a specific interest in learning and memory and want to understand how computational models can be integrated into experimental research on the hippocampus and learning. It emphasizes the function of brain structures as they give rise to behavior, rather than the molecular or neuronal details. It also emphasizes the process of modeling, rather than the mathematical details of the models themselves. The book is divided into two parts. The first part provides a tutorial introduction to topics in neuroscience, the psychology of learning and memory, and the theory of neural network models. The second part, the core of the book, reviews computational models of how the hippocampus cooperates with other brain structures -- including the entorhinal cortex, basal forebrain, cerebellum, and primary sensory and motor cortices -- to support learning and memory in both animals and humans. The book assumes no prior knowledge of computational modeling or mathematics. For those who wish to delve more deeply into the formal details of the models, there are optional "mathboxes" and appendices. The book also includes extensive references and suggestions for further readings.

Computational Modeling of Cognition and Behavior

Computational Modeling of Cognition and Behavior PDF Author: Simon Farrell
Publisher: Cambridge University Press
ISBN: 110710999X
Category : Psychology
Languages : en
Pages : 485

Book Description
This book presents an integrated framework for developing and testing computational models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.

Neuronal Dynamics

Neuronal Dynamics PDF Author: Wulfram Gerstner
Publisher: Cambridge University Press
ISBN: 1107060834
Category : Computers
Languages : en
Pages : 591

Book Description
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Cognitive Modeling

Cognitive Modeling PDF Author: Thad A. Polk
Publisher: MIT Press
ISBN: 9780262661164
Category : Psychology
Languages : en
Pages : 1300

Book Description
A comprehensive introduction to the computational modeling of human cognition.

Introduction to Neural and Cognitive Modeling

Introduction to Neural and Cognitive Modeling PDF Author: Daniel S. Levine
Publisher: Psychology Press
ISBN: 1135692246
Category : Psychology
Languages : en
Pages : 573

Book Description
This thoroughly, thoughtfully revised edition of a very successful textbook makes the principles and the details of neural network modeling accessible to cognitive scientists of all varieties as well as to others interested in these models. Research since the publication of the first edition has been systematically incorporated into a framework of proven pedagogical value. Features of the second edition include: * A new section on spatiotemporal pattern processing * Coverage of ARTMAP networks (the supervised version of adaptive resonance networks) and recurrent back-propagation networks * A vastly expanded section on models of specific brain areas, such as the cerebellum, hippocampus, basal ganglia, and visual and motor cortex * Up-to-date coverage of applications of neural networks in areas such as combinatorial optimization and knowledge representation As in the first edition, the text includes extensive introductions to neuroscience and to differential and difference equations as appendices for students without the requisite background in these areas. As graphically revealed in the flowchart in the front of the book, the text begins with simpler processes and builds up to more complex multilevel functional systems. For more information visit the author's personal Web site at www.uta.edu/psychology/faculty/levine/

The Cambridge Handbook of Computational Psychology

The Cambridge Handbook of Computational Psychology PDF Author: Ron Sun
Publisher: Cambridge University Press
ISBN: 0521674107
Category : Computers
Languages : en
Pages : 767

Book Description
A cutting-edge reference source for the interdisciplinary field of computational cognitive modeling.

Introduction to Neural and Cognitive Modeling

Introduction to Neural and Cognitive Modeling PDF Author: Daniel S. Levine
Publisher: Routledge
ISBN: 0429828799
Category : Psychology
Languages : en
Pages : 490

Book Description
This textbook provides a general introduction to the field of neural networks. Thoroughly revised and updated from the previous editions of 1991 and 2000, the current edition concentrates on networks for modeling brain processes involved in cognitive and behavioral functions. Part one explores the philosophy of modeling and the field’s history starting from the mid-1940s, and then discusses past models of associative learning and of short-term memory that provide building blocks for more complex recent models. Part two of the book reviews recent experimental findings in cognitive neuroscience and discusses models of conditioning, categorization, category learning, vision, visual attention, sequence learning, behavioral control, decision making, reasoning, and creativity. The book presents these models both as abstract ideas and through examples and concrete data for specific brain regions. The book includes two appendices to help ground the reader: one reviewing the mathematics used in network modeling, and a second reviewing basic neuroscience at both the neuron and brain region level. The book also includes equations, practice exercises, and thought experiments.

An Introduction to Neural Networks

An Introduction to Neural Networks PDF Author: James A. Anderson
Publisher: MIT Press
ISBN: 9780262510813
Category : Computers
Languages : en
Pages : 680

Book Description
An Introduction to Neural Networks falls into a new ecological niche for texts. Based on notes that have been class-tested for more than a decade, it is aimed at cognitive science and neuroscience students who need to understand brain function in terms of computational modeling, and at engineers who want to go beyond formal algorithms to applications and computing strategies. It is the only current text to approach networks from a broad neuroscience and cognitive science perspective, with an emphasis on the biology and psychology behind the assumptions of the models, as well as on what the models might be used for. It describes the mathematical and computational tools needed and provides an account of the author's own ideas. Students learn how to teach arithmetic to a neural network and get a short course on linear associative memory and adaptive maps. They are introduced to the author's brain-state-in-a-box (BSB) model and are provided with some of the neurobiological background necessary for a firm grasp of the general subject. The field now known as neural networks has split in recent years into two major groups, mirrored in the texts that are currently available: the engineers who are primarily interested in practical applications of the new adaptive, parallel computing technology, and the cognitive scientists and neuroscientists who are interested in scientific applications. As the gap between these two groups widens, Anderson notes that the academics have tended to drift off into irrelevant, often excessively abstract research while the engineers have lost contact with the source of ideas in the field. Neuroscience, he points out, provides a rich and valuable source of ideas about data representation and setting up the data representation is the major part of neural network programming. Both cognitive science and neuroscience give insights into how this can be done effectively: cognitive science suggests what to compute and neuroscience suggests how to compute it.

An Introduction to Modeling Neuronal Dynamics

An Introduction to Modeling Neuronal Dynamics PDF Author: Christoph Börgers
Publisher: Springer
ISBN: 3319511718
Category : Mathematics
Languages : en
Pages : 445

Book Description
This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.