Introduction to Microwave Circuits PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Introduction to Microwave Circuits PDF full book. Access full book title Introduction to Microwave Circuits by Robert J. Weber. Download full books in PDF and EPUB format.

Introduction to Microwave Circuits

Introduction to Microwave Circuits PDF Author: Robert J. Weber
Publisher: John Wiley & Sons
ISBN: 0780347048
Category : Technology & Engineering
Languages : en
Pages : 451

Book Description
"Do you want to design a wireless transmitter or receiver for hand-held telephones? Have you wondered why the printed circuit wires on high-frequency circuits don't always run in a straight line? This valuable text will answer all of your questions regarding component parasitics and circuit characterization for rf/microwave amplifier, oscillator, and filter circuit design and analysis. You will understand why capacitors act as inductors and vice versa and why amplifiers work like oscillators, while oscillators for local area networks work more like local area heaters. Application of the information in Introduction to Microwave Circuits will reduce design-cycle time and costs, markedly increasing the probability of first-time success in printed circuit or monolithic microwave integrated circuit (MMIC) design. Several approaches are taken into consideration, such as the effects of currents on the ground plane, bypass and coupling capacitors, and nonlinear effects in linear circuits. Featured topics include: * Incorporation of component parasitics in the design cycle * Closed form solution to oscillator design * Odd mode stability analysis * PIN diode analysis for high-power switching applications An integrated design example of a 1.25 GHz amplifier, oscillator, and filter printed circuit is also included, which could be useful in printed circuit board designs from tens of megahertz to tens of gigahertz. Introduction to Microwave Circuits provides the tools necessary to analyze or synthesize microwave circuits. This text is an essential reference for undergraduate students, microwave engineers, and administrators. Also, it will assist experienced designers in other fields to meet the current rapid expansion of communication system applications and work effectively in microwave circuit design. About the Author Robert J. Weber began his prolific career in the Solid State Research Laboratory at the Collins Radio Company, later a part of Rockwell International. For 25 years, he worked on advanced development and applied research in the one- to ten-gigahertz frequency range and received several distinguished awards for his valuable contributions to the field. Dr. Weber is involved in ongoing experimental research in integrating microwave circuits with other devices such as MEMS, chemical sensors, and electro-optics. Also, he teaches microwave circuit design and fiber-optics communications at the Department of Electrical and Computer Engineering, Iowa State University. Dr. Weber is an IEEE Fellow." Sponsored by: IEEE Microwave Theory and Techniques Society.

Introduction to Microwave Circuits

Introduction to Microwave Circuits PDF Author: Robert J. Weber
Publisher: John Wiley & Sons
ISBN: 0780347048
Category : Technology & Engineering
Languages : en
Pages : 451

Book Description
"Do you want to design a wireless transmitter or receiver for hand-held telephones? Have you wondered why the printed circuit wires on high-frequency circuits don't always run in a straight line? This valuable text will answer all of your questions regarding component parasitics and circuit characterization for rf/microwave amplifier, oscillator, and filter circuit design and analysis. You will understand why capacitors act as inductors and vice versa and why amplifiers work like oscillators, while oscillators for local area networks work more like local area heaters. Application of the information in Introduction to Microwave Circuits will reduce design-cycle time and costs, markedly increasing the probability of first-time success in printed circuit or monolithic microwave integrated circuit (MMIC) design. Several approaches are taken into consideration, such as the effects of currents on the ground plane, bypass and coupling capacitors, and nonlinear effects in linear circuits. Featured topics include: * Incorporation of component parasitics in the design cycle * Closed form solution to oscillator design * Odd mode stability analysis * PIN diode analysis for high-power switching applications An integrated design example of a 1.25 GHz amplifier, oscillator, and filter printed circuit is also included, which could be useful in printed circuit board designs from tens of megahertz to tens of gigahertz. Introduction to Microwave Circuits provides the tools necessary to analyze or synthesize microwave circuits. This text is an essential reference for undergraduate students, microwave engineers, and administrators. Also, it will assist experienced designers in other fields to meet the current rapid expansion of communication system applications and work effectively in microwave circuit design. About the Author Robert J. Weber began his prolific career in the Solid State Research Laboratory at the Collins Radio Company, later a part of Rockwell International. For 25 years, he worked on advanced development and applied research in the one- to ten-gigahertz frequency range and received several distinguished awards for his valuable contributions to the field. Dr. Weber is involved in ongoing experimental research in integrating microwave circuits with other devices such as MEMS, chemical sensors, and electro-optics. Also, he teaches microwave circuit design and fiber-optics communications at the Department of Electrical and Computer Engineering, Iowa State University. Dr. Weber is an IEEE Fellow." Sponsored by: IEEE Microwave Theory and Techniques Society.

An Introduction to Guided Waves and Microwave Circuits

An Introduction to Guided Waves and Microwave Circuits PDF Author: Robert Stratman Elliott
Publisher:
ISBN: 9780130136169
Category : Directional couplers
Languages : en
Pages : 733

Book Description


Microwaves : Introduction To Circuits,Devices And Antennas

Microwaves : Introduction To Circuits,Devices And Antennas PDF Author: M. L. Sisodia
Publisher: New Age International
ISBN: 9788122413380
Category : Microwave antennas
Languages : en
Pages : 616

Book Description
This Book Is Intended As An Introductory Text On Microwave Circuits, Devices And Antennas. It Can Be Used Not Only By The Students Of Physics And Engineering At The Graduate And The Postgraduate Levels, But Also By Practising Engineers, Technicians And Research Workers In The Area Of Microwaves. It Contains Comprehensive Up-To-Date Text For A Standard Course On Transmission Lines, Guided Waves, Passive Components (Including Ferrite Devices), Periodic Structures And Filters, Microwave Vacuum Tubes, Solid State Devices And Their Applications, Strip-Lines, Mics And Antennas. It Also Includes Microwave Measurements At Length. The Written Text Is Supplemented With A Large Number Of Suitable Diagrams And A Good Number Of Solved Examples For Reinforcing The Key Aspects. Each Chapter Has A Select Bibliography/References And Good Number Of Problems And Review Questions At The End.

Planar Microwave Engineering

Planar Microwave Engineering PDF Author: Thomas H. Lee
Publisher: Cambridge University Press
ISBN: 1316175774
Category : Technology & Engineering
Languages : en
Pages : 868

Book Description
Modern wireless communications hardware is underpinned by RF and microwave design techniques. This insightful book contains a wealth of circuit layouts, design tips, and practical measurement techniques for building and testing practical gigahertz systems. The book covers everything you need to know to design, build, and test a high-frequency circuit. Microstrip components are discussed, including tricks for extracting good performance from cheap materials. Connectors and cables are also described, as are discrete passive components, antennas, low-noise amplifiers, oscillators, and frequency synthesizers. Practical measurement techniques are presented in detail, including the use of network analyzers, sampling oscilloscopes, spectrum analyzers, and noise figure meters. Throughout the focus is practical, and many worked examples and design projects are included. There is also a CD-ROM that contains a variety of design and analysis programs. The book is packed with indispensable information for students taking courses on RF or microwave circuits and for practising engineers.

Introduction to Electromagnetic and Microwave Engineering

Introduction to Electromagnetic and Microwave Engineering PDF Author: Paul R. Karmel
Publisher: John Wiley & Sons
ISBN: 9780471177814
Category : Technology & Engineering
Languages : en
Pages : 730

Book Description
Dies ist in erster Linie ein Lehrbuch und Nachschlagewerk für Studenten aller Bereiche der Elektrotechnik. Für Studienanfänger dient es als Einführung in die Theorie des Elektromagnetismus. Fortgeschrittene Studenten finden darin eine Einführung in die Mikrowellentechnik und deren Anwendungsgebiete. Die elektromagnetische und Mikrowellentechnik wird umfassend behandelt, besonders im Hinblick auf Mikrowellen- und Telekommunikationsanwendungen. Abgesehen von den Standardthemen wird auf elektromagnetisches Rechnen eingegangen auf der Basis von MathCad und finiter Elemente Methode. (01/98)

High Frequency Techniques

High Frequency Techniques PDF Author: Joseph F. White
Publisher: John Wiley & Sons
ISBN: 1119244501
Category : Technology & Engineering
Languages : en
Pages : 524

Book Description
This textbook is an introduction to microwave engineering. The scope of this book extends from topics for a first course in electrical engineering, in which impedances are analyzed using complex numbers, through the introduction of transmission lines that are analyzed using the Smith Chart, and on to graduate level subjects, such as equivalent circuits for obstacles in hollow waveguides, analyzed using Green’s Functions. This book is a virtual encyclopedia of circuit design methods. Despite the complexity, topics are presented in a conversational manner for ease of comprehension. The book is not only an excellent text at the undergraduate and graduate levels, but is as well a detailed reference for the practicing engineer. Consider how well informed an engineer will be who has become familiar with these topics as treated in High Frequency Techniques: (in order of presentation) Brief history of wireless (radio) and the Morse code U.S. Radio Frequency Allocations Introduction to vectors AC analysis and why complex numbers and impedance are used Circuit and antenna reciprocity Decibel measure Maximum power transfer Skin effect Computer simulation and optimization of networks LC matching of one impedance to another Coupled Resonators Uniform transmission lines for propagation VSWR, return Loss and mismatch error The Telegrapher Equations (derived) Phase and Group Velocities The Impedance Transformation Equation for lines (derived) Fano's and Bode's matching limits The Smith Chart (derived) Slotted Line impedance measurement Constant Q circles on the Smith Chart Approximating a transmission line with lumped L's and C's ABCD, Z, Y and Scattering matrix analysis methods for circuits Statistical Design and Yield Analysis of products Electromagnetic Fields Gauss's Law Vector Dot Product, Divergence and Curl Static Potential and Gradient Ampere's Law and Vector Curl Maxwell's Equations and their visualization The Laplacian Rectangular, cylindrical and spherical coordinates Skin Effect The Wave Equation The Helmholtz Equations Plane Propagating Waves Rayleigh Fading Circular (elliptic) Polarization Poynting's Theorem EM fields on Transmission Lines Calculating the impedance of coaxial lines Calculating and visualizing the fields in waveguides Propagation constants and waveguide modes The Taylor Series Expansion Fourier Series and Green's Functions Higher order modes and how to suppress them Vector Potential and Retarded Potentials Wire and aperture antennas Radio propagation and path loss Electromagnetic computer simulation of structures Directional couplers The Rat Race Hybrid Even and Odd Mode Analysis applied to the backward wave coupler Network analyzer impedance and transmission measurements Two-port Scattering Parameters (s matrix) The Hybrid Ring coupler The Wilkinson power divider Filter design: Butterworth, Maximally flat & Tchebyscheff responses Filter Q Diplexer, Bandpass and Elliptic filters Richard's Transformation & Kuroda’s Identities Mumford's transmission line stub filters Transistor Amplifier Design: gain, biasing, stability, and conjugate matching Noise in systems, noise figure of an amplifier cascade Amplifier non-linearity, and spurious free dynamic range Statistical Design and Yield Analysis

Microwave Engineering

Microwave Engineering PDF Author: David M. Pozar
Publisher: John Wiley & Sons
ISBN: 0470631554
Category : Technology & Engineering
Languages : en
Pages : 752

Book Description
Pozar's new edition of Microwave Engineering includes more material on active circuits, noise, nonlinear effects, and wireless systems. Chapters on noise and nonlinear distortion, and active devices have been added along with the coverage of noise and more material on intermodulation distortion and related nonlinear effects. On active devices, there's more updated material on bipolar junction and field effect transistors. New and updated material on wireless communications systems, including link budget, link margin, digital modulation methods, and bit error rates is also part of the new edition. Other new material includes a section on transients on transmission lines, the theory of power waves, a discussion of higher order modes and frequency effects for microstrip line, and a discussion of how to determine unloaded.

A Guide to Noise in Microwave Circuits

A Guide to Noise in Microwave Circuits PDF Author: Peter Heymann
Publisher: John Wiley & Sons
ISBN: 1119859360
Category : Technology & Engineering
Languages : en
Pages : 516

Book Description
A GUIDE TO NOISE IN MICROWAVE CIRCUITS A fulsome exploration of critical considerations in microwave circuit noise In A Guide to Noise in Microwave Circuits: Devices, Circuits, and Measurement, a team of distinguished researchers deliver a comprehensive introduction to noise in microwave circuits, with a strong focus on noise characterization of devices and circuits. The book describes fluctuations beginning with their physical origin and touches on the general description of noise in linear and non-linear circuits. Several chapters are devoted to the description of noise measurement ­techniques and the interpretation of measured data. A full chapter is dedicated to noise sources as well, including thermal, shot, plasma, and current. A Guide to Noise in Microwave Circuits offers examples of measurement problems—like low noise block (LNB) of satellite television – and explores equipment and measurement methods, like the Y, cold source, and 7-state method. This book also includes: A thorough introduction to foundational terms in microwave circuit noise, including average values, amplitude distribution, autocorrelation, cross-correlation, and noise spectra Comprehensive explorations of common noise sources, including thermal noise, the Nyquist formula and thermal radiation, shot noise, plasma noise, and more Practical discussions of noise and linear networks, including narrowband noise In-depth examinations of calculation methods for noise quantities, including noise voltages, currents, and spectra, the noise correlation matrix, and the noise of simple passive networks Perfect for graduate students specializing in microwave and wireless electronics, A Guide to Noise in Microwave Circuits: Devices, Circuits, and Measurement will also earn a place in the libraries of professional engineers working in microwave or wireless circuits and system design.

Microwave Devices, Circuits and Subsystems for Communications Engineering

Microwave Devices, Circuits and Subsystems for Communications Engineering PDF Author: Ian A. Glover
Publisher: John Wiley & Sons
ISBN: 0470012749
Category : Technology & Engineering
Languages : en
Pages : 550

Book Description
Microwave Devices, Circuits and Subsystems for Communications Engineering provides a detailed treatment of the common microwave elements found in modern microwave communications systems. The treatment is thorough without being unnecessarily mathematical. The emphasis is on acquiring a conceptual understanding of the techniques and technologies discussed and the practical design criteria required to apply these in real engineering situations. Key topics addressed include: Microwave diode and transistor equivalent circuits Microwave transmission line technologies and microstrip design Network methods and s-parameter measurements Smith chart and related design techniques Broadband and low-noise amplifier design Mixer theory and design Microwave filter design Oscillators, synthesisers and phase locked loops Each chapter is written by specialists in their field and the whole is edited by experience authors whose expertise spans the fields of communications systems engineering and microwave circuit design. Microwave Devices, Circuits and Subsystems for Communications Engineering is suitable for senior electrical, electronic or telecommunications engineering undergraduate students, first year postgraduate students and experienced engineers seeking a conversion or refresher text. Includes a companion website featuring: Solutions to selected problems Electronic versions of the figures Sample chapter

An Introduction to the Theory of Microwave Circuits

An Introduction to the Theory of Microwave Circuits PDF Author: K. Kurokawa
Publisher: Elsevier
ISBN: 0323162940
Category : Technology & Engineering
Languages : en
Pages : 447

Book Description
An Introduction to the Theory of Microwave Circuits