Introduction to Matrix Analytic Methods in Stochastic Modeling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Introduction to Matrix Analytic Methods in Stochastic Modeling PDF full book. Access full book title Introduction to Matrix Analytic Methods in Stochastic Modeling by G. Latouche. Download full books in PDF and EPUB format.

Introduction to Matrix Analytic Methods in Stochastic Modeling

Introduction to Matrix Analytic Methods in Stochastic Modeling PDF Author: G. Latouche
Publisher: SIAM
ISBN: 0898714257
Category : Mathematics
Languages : en
Pages : 331

Book Description
Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.

Introduction to Matrix Analytic Methods in Stochastic Modeling

Introduction to Matrix Analytic Methods in Stochastic Modeling PDF Author: G. Latouche
Publisher: SIAM
ISBN: 0898714257
Category : Mathematics
Languages : en
Pages : 331

Book Description
Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.

Introduction to Matrix Analytic Methods in Queues 1

Introduction to Matrix Analytic Methods in Queues 1 PDF Author: Srinivas R. Chakravarthy
Publisher: John Wiley & Sons
ISBN: 1394165412
Category : Mathematics
Languages : en
Pages : 372

Book Description
Matrix-analytic methods (MAM) were introduced by Professor Marcel Neuts and have been applied to a variety of stochastic models since. In order to provide a clear and deep understanding of MAM while showing their power, this book presents MAM concepts and explains the results using a number of worked-out examples. This book’s approach will inform and kindle the interest of researchers attracted to this fertile field. To allow readers to practice and gain experience in the algorithmic and computational procedures of MAM, Introduction to Matrix Analytic Methods in Queues 1 provides a number of computational exercises. It also incorporates simulation as another tool for studying complex stochastic models, especially when the state space of the underlying stochastic models under analytic study grows exponentially. The book’s detailed approach will make it more accessible for readers interested in learning about MAM in stochastic models.

Introduction to Matrix-Analytic Methods in Queues 2

Introduction to Matrix-Analytic Methods in Queues 2 PDF Author: Srinivas R. Chakravarthy
Publisher: John Wiley & Sons
ISBN: 1394174195
Category : Mathematics
Languages : en
Pages : 453

Book Description
Matrix-analytic methods (MAM) were introduced by Professor Marcel Neuts and have been applied to a variety of stochastic models since. In order to provide a clear and deep understanding of MAM while showing their power, this book presents MAM concepts and explains the results using a number of worked-out examples. This book's approach will inform and kindle the interest of researchers attracted to this fertile field. To allow readers to practice and gain experience in the algorithmic and computational procedures of MAM, Introduction to Matrix-Analytic Methods in Queues 2 provides a number of computational exercises. It also incorporates simulation as another tool for studying complex stochastic models, especially when the state space of the underlying stochastic models under analytic study grows exponentially. This book's detailed approach will make it more accessible for readers interested in learning about MAM in stochastic models.

An Introduction to Queueing Theory

An Introduction to Queueing Theory PDF Author: L. Breuer
Publisher: Springer Science & Business Media
ISBN: 1402036310
Category : Mathematics
Languages : en
Pages : 274

Book Description
The present textbook contains the recordsof a two–semester course on que- ing theory, including an introduction to matrix–analytic methods. This course comprises four hours oflectures and two hours of exercises per week andhas been taughtattheUniversity of Trier, Germany, for about ten years in - quence. The course is directed to last year undergraduate and?rst year gr- uate students of applied probability and computer science, who have already completed an introduction to probability theory. Its purpose is to present - terial that is close enough to concrete queueing models and their applications, while providing a sound mathematical foundation for the analysis of these. Thus the goal of the present book is two–fold. On the one hand, students who are mainly interested in applications easily feel bored by elaborate mathematical questions in the theory of stochastic processes. The presentation of the mathematical foundations in our courses is chosen to cover only the necessary results, which are needed for a solid foundation of the methods of queueing analysis. Further, students oriented - wards applications expect to have a justi?cation for their mathematical efforts in terms of immediate use in queueing analysis. This is the main reason why we have decided to introduce new mathematical concepts only when they will be used in the immediate sequel. On the other hand, students of applied probability do not want any heur- tic derivations just for the sake of yielding fast results for the model at hand.

Asymptotic and Analytic Methods in Stochastic Evolutionary Symptoms

Asymptotic and Analytic Methods in Stochastic Evolutionary Symptoms PDF Author: Dmitri Koroliouk
Publisher: John Wiley & Sons
ISBN: 139422947X
Category : Mathematics
Languages : en
Pages : 276

Book Description
This book illustrates a number of asymptotic and analytic approaches applied for the study of random evolutionary systems, and considers typical problems for specific examples. In this case, constructive mathematical models of natural processes are used, which more realistically describe the trajectories of diffusion-type processes, rather than those of the Wiener process. We examine models where particles have some free distance between two consecutive collisions. At the same time, we investigate two cases: the Markov evolutionary system, where the time during which the particle moves towards some direction is distributed exponentially with intensity parameter λ; and the semi-Markov evolutionary system, with arbitrary distribution of the switching process. Thus, the models investigated here describe the motion of particles with a finite speed and the proposed random evolutionary process with characteristics of a natural physical process: free run and finite propagation speed. In the proposed models, the number of possible directions of evolution can be finite or infinite.

An Introduction to Queueing Theory

An Introduction to Queueing Theory PDF Author: U. Narayan Bhat
Publisher: Birkhäuser
ISBN: 0817684212
Category : Mathematics
Languages : en
Pages : 343

Book Description
This introductory textbook is designed for a one-semester course on queueing theory that does not require a course on stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introduction to the modeling and analysis of queueing systems for a broad interdisciplinary audience of students in mathematics, statistics, and applied disciplines such as computer science, operations research, and engineering. This edition includes additional topics in methodology and applications. Key features: • An introductory chapter including a historical account of the growth of queueing theory in more than 100 years. • A modeling-based approach with emphasis on identification of models • Rigorous treatment of the foundations of basic models commonly used in applications with appropriate references for advanced topics. • A chapter on matrix-analytic method as an alternative to the traditional methods of analysis of queueing systems. • A comprehensive treatment of statistical inference for queueing systems. • Modeling exercises and review exercises when appropriate. The second edition of An Introduction of Queueing Theory may be used as a textbook by first-year graduate students in fields such as computer science, operations research, industrial and systems engineering, as well as related fields such as manufacturing and communications engineering. Upper-level undergraduate students in mathematics, statistics, and engineering may also use the book in an introductory course on queueing theory. With its rigorous coverage of basic material and extensive bibliography of the queueing literature, the work may also be useful to applied scientists and practitioners as a self-study reference for applications and further research. "...This book has brought a freshness and novelty as it deals mainly with modeling and analysis in applications as well as with statistical inference for queueing problems. With his 40 years of valuable experience in teaching and high level research in this subject area, Professor Bhat has been able to achieve what he aimed: to make [the work] somewhat different in content and approach from other books." - Assam Statistical Review of the first edition

Information Technologies and Mathematical Modelling. Queueing Theory and Applications

Information Technologies and Mathematical Modelling. Queueing Theory and Applications PDF Author: Alexander Dudin
Publisher: Springer Nature
ISBN: 3031653858
Category :
Languages : en
Pages : 340

Book Description


Fundamentals of Matrix-Analytic Methods

Fundamentals of Matrix-Analytic Methods PDF Author: Qi-Ming He
Publisher: Springer Science & Business Media
ISBN: 1461473306
Category : Computers
Languages : en
Pages : 363

Book Description
Fundamentals of Matrix-Analytic Methods targets advanced-level students in mathematics, engineering and computer science. It focuses on the fundamental parts of Matrix-Analytic Methods, Phase-Type Distributions, Markovian arrival processes and Structured Markov chains and matrix geometric solutions. New materials and techniques are presented for the first time in research and engineering design. This book emphasizes stochastic modeling by offering probabilistic interpretation and constructive proofs for Matrix-Analytic Methods. Such an approach is especially useful for engineering analysis and design. Exercises and examples are provided throughout the book.

Intelligent Computing on IoT 2.0, Big Data Analytics, and Block Chain Technology

Intelligent Computing on IoT 2.0, Big Data Analytics, and Block Chain Technology PDF Author: Mohammad S. Obaidat
Publisher: CRC Press
ISBN: 1040019633
Category : Computers
Languages : en
Pages : 418

Book Description
The book is designed as a reference text and explores the concepts and techniques of IoT, artificial intelligence (AI), and blockchain. It also discusses the possibility of applying blockchain for providing security in various domains. The specific highlight of this book is focused on the application of integrated technologies in enhancing data models, better insights and discovery, intelligent predictions, smarter finance, smart retail, global verification, transparent governance, and innovative audit systems. The book discusses the potential of blockchain to significantly increase data while boosting accuracy and integrity in IoT-generated data and AI-processed information. It elucidates definitions, concepts, theories, and assumptions involved in smart contracts and distributed ledgers related to IoT systems and AI approaches. The book offers real-world uses of blockchain technologies in different IoT systems and further studies its influence in supply chains and logistics, the automotive industry, smart homes, the pharmaceutical industry, agriculture, and other areas. It also presents readers with ways of employing blockchain in IoT and AI, helping them to understand what they can and cannot do with blockchain. The book is aimed primarily at advanced undergraduates and graduates studying computer science, computer engineering, electrical engineering, information systems, computational sciences, artificial intelligence, and information technology. Researchers and professionals will also find this book very useful.

Computational Probability

Computational Probability PDF Author: Winfried K. Grassmann
Publisher: Springer Science & Business Media
ISBN: 9780792386179
Category : Business & Economics
Languages : en
Pages : 514

Book Description
Great advances have been made in recent years in the field of computational probability. In particular, the state of the art - as it relates to queuing systems, stochastic Petri-nets and systems dealing with reliability - has benefited significantly from these advances. The objective of this book is to make these topics accessible to researchers, graduate students, and practitioners. Great care was taken to make the exposition as clear as possible. Every line in the book has been evaluated, and changes have been made whenever it was felt that the initial exposition was not clear enough for the intended readership. The work of major research scholars in this field comprises the individual chapters of Computational Probability. The first chapter describes, in nonmathematical terms, the challenges in computational probability. Chapter 2 describes the methodologies available for obtaining the transition matrices for Markov chains, with particular emphasis on stochastic Petri-nets. Chapter 3 discusses how to find transient probabilities and transient rewards for these Markov chains. The next two chapters indicate how to find steady-state probabilities for Markov chains with a finite number of states. Both direct and iterative methods are described in Chapter 4. Details of these methods are given in Chapter 5. Chapters 6 and 7 deal with infinite-state Markov chains, which occur frequently in queueing, because there are times one does not want to set a bound for all queues. Chapter 8 deals with transforms, in particular Laplace transforms. The work of Ward Whitt and his collaborators, who have recently developed a number of numerical methods for Laplace transform inversions, is emphasized in this chapter. Finally, if one wants to optimize a system, one way to do the optimization is through Markov decision making, described in Chapter 9. Markov modeling has found applications in many areas, three of which are described in detail: Chapter 10 analyzes discrete-time queues, Chapter 11 describes networks of queues, and Chapter 12 deals with reliability theory.