Introduction to Mathematical Systems Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Introduction to Mathematical Systems Theory PDF full book. Access full book title Introduction to Mathematical Systems Theory by J.C. Willems. Download full books in PDF and EPUB format.

Introduction to Mathematical Systems Theory

Introduction to Mathematical Systems Theory PDF Author: J.C. Willems
Publisher: Springer Science & Business Media
ISBN: 1475729537
Category : Mathematics
Languages : en
Pages : 446

Book Description
Using the behavioural approach to mathematical modelling, this book views a system as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. The first part analyses the structure of the set of trajectories generated by such dynamical systems, and derives the conditions for two systems of differential equations to be equivalent in the sense that they define the same behaviour. In addition the memory structure of the system is analysed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. In the third part, control problems are considered, in particular stabilisation and pole placement questions. Suitable for advanced undergraduate or beginning graduate students in mathematics and engineering, this text contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.

Introduction to Mathematical Systems Theory

Introduction to Mathematical Systems Theory PDF Author: J.C. Willems
Publisher: Springer Science & Business Media
ISBN: 1475729537
Category : Mathematics
Languages : en
Pages : 446

Book Description
Using the behavioural approach to mathematical modelling, this book views a system as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. The first part analyses the structure of the set of trajectories generated by such dynamical systems, and derives the conditions for two systems of differential equations to be equivalent in the sense that they define the same behaviour. In addition the memory structure of the system is analysed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. In the third part, control problems are considered, in particular stabilisation and pole placement questions. Suitable for advanced undergraduate or beginning graduate students in mathematics and engineering, this text contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.

Mathematical Systems Theory I

Mathematical Systems Theory I PDF Author: Diederich Hinrichsen
Publisher: Springer Science & Business Media
ISBN: 3540441255
Category : Mathematics
Languages : en
Pages : 818

Book Description
This book presents the mathematical foundations of systems theory in a self-contained, comprehensive, detailed and mathematically rigorous way. It is devoted to the analysis of dynamical systems and combines features of a detailed introductory textbook with that of a reference source. The book contains many examples and figures illustrating the text which help to bring out the intuitive ideas behind the mathematical constructions.

Introduction to Mathematical Systems Theory

Introduction to Mathematical Systems Theory PDF Author: Christiaan Heij
Publisher: Springer Science & Business Media
ISBN: 3764375493
Category : Science
Languages : en
Pages : 169

Book Description
This book provides an introduction to the theory of linear systems and control for students in business mathematics, econometrics, computer science, and engineering; the focus is on discrete time systems. The subjects treated are among the central topics of deterministic linear system theory: controllability, observability, realization theory, stability and stabilization by feedback, LQ-optimal control theory. Kalman filtering and LQC-control of stochastic systems are also discussed, as are modeling, time series analysis and model specification, along with model validation.

Mathematical Control Theory

Mathematical Control Theory PDF Author: Jerzy Zabczyk
Publisher: Springer Science & Business Media
ISBN: 9780817647322
Category : Language Arts & Disciplines
Languages : en
Pages : 276

Book Description
In a mathematically precise manner, this book presents a unified introduction to deterministic control theory. It includes material on the realization of both linear and nonlinear systems, impulsive control, and positive linear systems.

Mathematical Control Theory

Mathematical Control Theory PDF Author: Eduardo D. Sontag
Publisher: Springer Science & Business Media
ISBN: 1461205778
Category : Mathematics
Languages : en
Pages : 543

Book Description
Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.

Introduction to the Mathematical Theory of Control

Introduction to the Mathematical Theory of Control PDF Author: Alberto Bressan
Publisher:
ISBN:
Category : Control theory
Languages : en
Pages : 336

Book Description


Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems

Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems PDF Author: Hal L. Smith
Publisher: American Mathematical Soc.
ISBN: 0821844873
Category : Mathematics
Languages : en
Pages : 186

Book Description
This book presents comprehensive treatment of a rapidly developing area with many potential applications: the theory of monotone dynamical systems and the theory of competitive and cooperative differential equations. The primary aim is to provide potential users of the theory with techniques, results, and ideas useful in applications, while at the same time providing rigorous proofs. Among the topics discussed in the book are continuous-time monotone dynamical systems, and quasimonotone and nonquasimonotone delay differential equations. The book closes with a discussion of applications to quasimonotone systems of reaction-diffusion type. Throughout the book, applications of the theory to many mathematical models arising in biology are discussed. Requiring a background in dynamical systems at the level of a first graduate course, this book is useful to graduate students and researchers working in the theory of dynamical systems and its applications.

Mathematical Systems Theory

Mathematical Systems Theory PDF Author: Geert Jan Olsder
Publisher:
ISBN: 9789071301407
Category : System theory
Languages : en
Pages : 208

Book Description


Introduction to the Modern Theory of Dynamical Systems

Introduction to the Modern Theory of Dynamical Systems PDF Author: Anatole Katok
Publisher: Cambridge University Press
ISBN: 9780521575577
Category : Mathematics
Languages : en
Pages : 828

Book Description
This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem PDF Author: Kenneth R. Meyer
Publisher: Springer
ISBN: 3319536915
Category : Mathematics
Languages : en
Pages : 389

Book Description
This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)