Introduction to Ligand Field Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Introduction to Ligand Field Theory PDF full book. Access full book title Introduction to Ligand Field Theory by Carl Johan Ballhausen. Download full books in PDF and EPUB format.

Introduction to Ligand Field Theory

Introduction to Ligand Field Theory PDF Author: Carl Johan Ballhausen
Publisher:
ISBN:
Category : Ligand field theory
Languages : en
Pages : 320

Book Description


Introduction to Ligand Field Theory

Introduction to Ligand Field Theory PDF Author: Carl Johan Ballhausen
Publisher:
ISBN:
Category : Ligand field theory
Languages : en
Pages : 320

Book Description


Introduction to Ligand Fields

Introduction to Ligand Fields PDF Author: B. N. Figgis
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 372

Book Description


Introduction to Ligand Field Theory

Introduction to Ligand Field Theory PDF Author: Carl Johan Ballhausen
Publisher:
ISBN:
Category : Complex compounds
Languages : en
Pages : 320

Book Description
"I have tried to give an introduction to that field of chemistry which deals wit the spectral and magnetic features of inorganic complexes. It has been my intention not to follow the theory in all its manifestations, but merely to describe the basic ideas and applications. This has been done with an eye constantly aimed at the practical and experimental features of the chemistry of the complex ions. The book is thus primarily intended for the inorganic chemist, but it is true that, in order to follow the exposition, a course in basic quantum mechanics is needed"--Preface.

Ligand Field Theory and Its Applications

Ligand Field Theory and Its Applications PDF Author: Brian N. Figgis
Publisher: Wiley-VCH
ISBN:
Category : Science
Languages : en
Pages : 384

Book Description
A complete, up-to-date treatment of ligand field theory and its applications Ligand Field Theory and Its Applications presents an up-to-date account of ligand field theory, the model currently used to describe the metal-ligand interactions in transition metal compounds, and the way it is used to interpret the physical properties of the complexes. It examines the traditional electrostatic crystal field model, still widely used by physicists, as well as covalent approaches such as the angular overlap model, which interprets the metal ligand interactions using parameters relating directly to chemical behavior. Written by internationally recognized experts in the field, this book provides a comparison between ligand field theory and more sophisticated treatments as well as an account of the methods used to calculate the energy levels in compounds of the transition metals. It also covers physical properties such as stereochemistry, light absorption, and magnetic behavior. An emphasis on the interpretation of experimental results broadens the book's field of interest beyond transition metal chemistry into the many other areas where these metal ions play an important role. As clear and accessible as Brian Figgis's 1966 classic Introduction to Ligand Fields, this new book provides inorganic and bioinorganic chemists as well as physical chemists, chemical physicists, and spectroscopists with a much-needed overview of the many significant changes that have taken place in ligand field theory over the past 30 years.

Ligand Field Theory and Its Applications

Ligand Field Theory and Its Applications PDF Author: Brian N. Figgis
Publisher: Wiley-VCH
ISBN:
Category : Science
Languages : en
Pages : 384

Book Description
A complete, up-to-date treatment of ligand field theory and its applications Ligand Field Theory and Its Applications presents an up-to-date account of ligand field theory, the model currently used to describe the metal-ligand interactions in transition metal compounds, and the way it is used to interpret the physical properties of the complexes. It examines the traditional electrostatic crystal field model, still widely used by physicists, as well as covalent approaches such as the angular overlap model, which interprets the metal ligand interactions using parameters relating directly to chemical behavior. Written by internationally recognized experts in the field, this book provides a comparison between ligand field theory and more sophisticated treatments as well as an account of the methods used to calculate the energy levels in compounds of the transition metals. It also covers physical properties such as stereochemistry, light absorption, and magnetic behavior. An emphasis on the interpretation of experimental results broadens the book's field of interest beyond transition metal chemistry into the many other areas where these metal ions play an important role. As clear and accessible as Brian Figgis's 1966 classic Introduction to Ligand Fields, this new book provides inorganic and bioinorganic chemists as well as physical chemists, chemical physicists, and spectroscopists with a much-needed overview of the many significant changes that have taken place in ligand field theory over the past 30 years.

An Introduction to Transition-metal Chemistry: Ligand-field Theory

An Introduction to Transition-metal Chemistry: Ligand-field Theory PDF Author: Leslie E. Orgel
Publisher:
ISBN:
Category : Chemistry, Physical and theoretical
Languages : en
Pages : 184

Book Description


A Textbook of Inorganic Chemistry – Volume 1

A Textbook of Inorganic Chemistry – Volume 1 PDF Author: Mandeep Dalal
Publisher: Dalal Institute
ISBN: 8193872002
Category : Science
Languages : en
Pages : 480

Book Description
An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory, dπ -pπ bonds, Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions, Trends in stepwise constants, Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand, Chelate effect and its thermodynamic origin, Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes, Mechanisms for ligand replacement reactions, Formation of complexes from aquo ions, Ligand displacement reactions in octahedral complexes- acid hydrolysis, Base hydrolysis, Racemization of tris chelate complexes, Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes, The trans effect, Theories of trans effect, Mechanism of electron transfer reactions – types; Outer sphere electron transfer mechanism and inner sphere electron transfer mechanism, Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory, Molecular orbital theory, octahedral, tetrahedral or square planar complexes, π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals, Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states), Calculation of Dq, B and β parameters, Effect of distortion on the d-orbital energy levels, Structural evidence from electronic spectrum, John-Tellar effect, Spectrochemical and nephalauxetic series, Charge transfer spectra, Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry, Guoy’s method for determination of magnetic susceptibility, Calculation of magnetic moments, Magnetic properties of free ions, Orbital contribution, effect of ligand-field, Application of magneto-chemistry in structure determination, Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes, Wade’s rules, Carboranes, Metal Carbonyl Clusters - Low Nuclearity Carbonyl Clusters, Total Electron Count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls, structure and bonding, Vibrational spectra of metal carbonyls for bonding and structure elucidation, Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.

LIGAND FIELD THEORY AND ITS APPLICATIONS

LIGAND FIELD THEORY AND ITS APPLICATIONS PDF Author: MICHAEL A. HITCHMAN BRIAN N. FIGGIS
Publisher:
ISBN: 9788126528455
Category :
Languages : en
Pages : 376

Book Description


Multiplets of Transition-Metal Ions in Crystals

Multiplets of Transition-Metal Ions in Crystals PDF Author: Satoru Sugano
Publisher: Elsevier
ISBN: 0323154794
Category : Science
Languages : en
Pages : 348

Book Description
Multiplets of Transition-Metal Ions in Crystals provides information pertinent to ligand field theory. This book discusses the fundamentals of quantum mechanics and the theory of atomic spectra. Comprised of 10 chapters, this book starts with an overview of the qualitative nature of the splitting of the energy level as well as the angular behavior of the wavefunctions. This text then examines the problem of obtaining the energy eigenvalues and eigenstates of the two-electron systems, in which two electrons are accommodated in the t2g and eg shells in a variety of ways. Other chapters discuss the ligand-field potential, which is invariant to any symmetry operation in the group to which symmetry of the system belongs. This book discusses as well the approximate method of expressing molecular orbitals (MO) by a suitable linear combination of atomic orbitals (AO). The final chapter discusses the MO in molecules and the self-consistent field theory of Hartree–Fock. This book is a valuable resource for research physicists, chemists, electronic engineers, and graduate students.

Ligand Field

Ligand Field PDF Author: Ekkehard Konig
Publisher: Springer Science & Business Media
ISBN: 1475715293
Category : Science
Languages : en
Pages : 449

Book Description
Twenty years ago Tanabe and Sugano published the first ligand field energy diagrarns which are applicable to dN electronic configurations. These diagrams are limited in scope in that they can be used only for octahedral symmetry and for a limited number of terms. The present volume is an attempt to fill the gap by providing a reasonable nurober of complete and accurate ligand field energy diagrarns for dN configurations in the most commonly encountered symmetries. Despite their limited nature, the diagrarns of Tanabe and Sugano were exten sively used in the past in order to rationalize optical and luminescence spectra and to discuss various electronic properties of transition metal ions, their coordination compounds and solids. Moreover, Tanabe-Sugano diagrams have an established place in the theory of transition metal compounds and are included in most textbooks of inorganic and coordination chemistry. It is expected that the present diagrarns will be found useful for a similar purpose.