Author: Sigurdur Helgason
Publisher: Springer Science & Business Media
ISBN: 1441960546
Category : Mathematics
Languages : en
Pages : 309
Book Description
In this text, integral geometry deals with Radon’s problem of representing a function on a manifold in terms of its integrals over certain submanifolds—hence the term the Radon transform. Examples and far-reaching generalizations lead to fundamental problems such as: (i) injectivity, (ii) inversion formulas, (iii) support questions, (iv) applications (e.g., to tomography, partial di erential equations and group representations). For the case of the plane, the inversion theorem and the support theorem have had major applications in medicine through tomography and CAT scanning. While containing some recent research, the book is aimed at beginning graduate students for classroom use or self-study. A number of exercises point to further results with documentation. From the reviews: “Integral Geometry is a fascinating area, where numerous branches of mathematics meet together. the contents of the book is concentrated around the duality and double vibration, which is realized through the masterful treatment of a variety of examples. the book is written by an expert, who has made fundamental contributions to the area.” —Boris Rubin, Louisiana State University
Integral Geometry and Radon Transforms
Introduction to Geometric Probability
Author: Daniel A. Klain
Publisher: Cambridge University Press
ISBN: 9780521596541
Category : Mathematics
Languages : en
Pages : 196
Book Description
The purpose of this book is to present the three basic ideas of geometrical probability, also known as integral geometry, in their natural framework. In this way, the relationship between the subject and enumerative combinatorics is more transparent, and the analogies can be more productively understood. The first of the three ideas is invariant measures on polyconvex sets. The authors then prove the fundamental lemma of integral geometry, namely the kinematic formula. Finally the analogues between invariant measures and finite partially ordered sets are investigated, yielding insights into Hecke algebras, Schubert varieties and the quantum world, as viewed by mathematicians. Geometers and combinatorialists will find this a most stimulating and fruitful story.
Publisher: Cambridge University Press
ISBN: 9780521596541
Category : Mathematics
Languages : en
Pages : 196
Book Description
The purpose of this book is to present the three basic ideas of geometrical probability, also known as integral geometry, in their natural framework. In this way, the relationship between the subject and enumerative combinatorics is more transparent, and the analogies can be more productively understood. The first of the three ideas is invariant measures on polyconvex sets. The authors then prove the fundamental lemma of integral geometry, namely the kinematic formula. Finally the analogues between invariant measures and finite partially ordered sets are investigated, yielding insights into Hecke algebras, Schubert varieties and the quantum world, as viewed by mathematicians. Geometers and combinatorialists will find this a most stimulating and fruitful story.
Geometric Integration Theory
Author: Hassler Whitney
Publisher: Princeton University Press
ISBN: 1400877571
Category : Mathematics
Languages : en
Pages : 404
Book Description
A complete theory of integration as it appears in geometric and physical problems must include integration over oriented r-dimensional domains in n-space; both the integrand and the domain may be variable. This is the primary subject matter of the present book, designed to bring out the underlying geometric and analytic ideas and to give clear and complete proofs of the basic theorems. Originally published in 1957. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400877571
Category : Mathematics
Languages : en
Pages : 404
Book Description
A complete theory of integration as it appears in geometric and physical problems must include integration over oriented r-dimensional domains in n-space; both the integrand and the domain may be variable. This is the primary subject matter of the present book, designed to bring out the underlying geometric and analytic ideas and to give clear and complete proofs of the basic theorems. Originally published in 1957. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
An Introduction to Complex Analysis and Geometry
Author: John P. D'Angelo
Publisher: American Mathematical Soc.
ISBN: 0821852744
Category : Functions of complex variables
Languages : en
Pages : 177
Book Description
Provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 to 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study.
Publisher: American Mathematical Soc.
ISBN: 0821852744
Category : Functions of complex variables
Languages : en
Pages : 177
Book Description
Provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 to 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study.
Integral Geometry and Valuations
Author: Semyon Alesker
Publisher: Springer
ISBN: 3034808747
Category : Mathematics
Languages : en
Pages : 121
Book Description
In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, provides an introduction to the theory of convex valuations with emphasis on recent developments. In particular, it presents the new structures on the space of valuations discovered after Alesker's irreducibility theorem. The newly developed theory of valuations on manifolds is also described. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló. The approach is new and based on the notions and tools presented in the first part. This original viewpoint not only enlightens the classical integral geometry of euclidean space, but it also allows the computation of kinematic formulas in other geometries, such as hermitian spaces. The book will appeal to graduate students and interested researchers from related fields including convex, stochastic, and differential geometry.
Publisher: Springer
ISBN: 3034808747
Category : Mathematics
Languages : en
Pages : 121
Book Description
In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, provides an introduction to the theory of convex valuations with emphasis on recent developments. In particular, it presents the new structures on the space of valuations discovered after Alesker's irreducibility theorem. The newly developed theory of valuations on manifolds is also described. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló. The approach is new and based on the notions and tools presented in the first part. This original viewpoint not only enlightens the classical integral geometry of euclidean space, but it also allows the computation of kinematic formulas in other geometries, such as hermitian spaces. The book will appeal to graduate students and interested researchers from related fields including convex, stochastic, and differential geometry.
The Radon Transform
Author: Sigurdur Helgason
Publisher: Springer Science & Business Media
ISBN: 9780817641092
Category : Mathematics
Languages : en
Pages : 214
Book Description
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.
Publisher: Springer Science & Business Media
ISBN: 9780817641092
Category : Mathematics
Languages : en
Pages : 214
Book Description
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.
Integral Points on Algebraic Varieties
Author: Pietro Corvaja
Publisher: Springer
ISBN: 9811026483
Category : Mathematics
Languages : en
Pages : 82
Book Description
This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geometrical perspective. It presents recent results not available in textbooks and also new viewpoints on classical material. In some instances, proofs have been replaced by a detailed analysis of particular cases, referring to the quoted papers for complete proofs. A central role is played by Siegel’s finiteness theorem for integral points on curves. The book ends with the analysis of integral points on surfaces.
Publisher: Springer
ISBN: 9811026483
Category : Mathematics
Languages : en
Pages : 82
Book Description
This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geometrical perspective. It presents recent results not available in textbooks and also new viewpoints on classical material. In some instances, proofs have been replaced by a detailed analysis of particular cases, referring to the quoted papers for complete proofs. A central role is played by Siegel’s finiteness theorem for integral points on curves. The book ends with the analysis of integral points on surfaces.
Integral Geometry of Tensor Fields
Author: V. A. Sharafutdinov
Publisher: Walter de Gruyter
ISBN: 3110900092
Category : Mathematics
Languages : en
Pages : 277
Book Description
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Publisher: Walter de Gruyter
ISBN: 3110900092
Category : Mathematics
Languages : en
Pages : 277
Book Description
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Geometric Integration Theory
Author: Steven G. Krantz
Publisher: Springer Science & Business Media
ISBN: 0817646795
Category : Mathematics
Languages : en
Pages : 344
Book Description
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Publisher: Springer Science & Business Media
ISBN: 0817646795
Category : Mathematics
Languages : en
Pages : 344
Book Description
This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Stochastic and Integral Geometry
Author: R.V. Ambartzumian
Publisher: Springer Science & Business Media
ISBN: 9400939213
Category : Mathematics
Languages : en
Pages : 135
Book Description
Publisher: Springer Science & Business Media
ISBN: 9400939213
Category : Mathematics
Languages : en
Pages : 135
Book Description