Author: Anthony J. Wheeler
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 472
Book Description
This text for an undergraduate junior or senior course covers the most common elements necessary to design, execute, analyze, and document an engineering experiment or measurement system and to specify instrumentation for a production process. In addition to descriptions of common measurement systems, the text covers computerized data acquisition systems, common statistical techniques, experimental uncertainty analysis, and guidelines for planning and documenting experiments. The authors are affiliated with the school of engineering at San Francisco State University. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com)
Introduction to Engineering Experimentation
Introductory Statistics for Engineering Experimentation
Author: Peter R. Nelson
Publisher: Academic Press
ISBN: 0125154232
Category : Mathematics
Languages : en
Pages : 528
Book Description
A concise treatment for undergraduate and graduate students who need a guide to statistics that focuses specifically on engineering.
Publisher: Academic Press
ISBN: 0125154232
Category : Mathematics
Languages : en
Pages : 528
Book Description
A concise treatment for undergraduate and graduate students who need a guide to statistics that focuses specifically on engineering.
Experimentation in Software Engineering
Author: Claes Wohlin
Publisher: Springer Science & Business Media
ISBN: 3642290442
Category : Computers
Languages : en
Pages : 249
Book Description
Like other sciences and engineering disciplines, software engineering requires a cycle of model building, experimentation, and learning. Experiments are valuable tools for all software engineers who are involved in evaluating and choosing between different methods, techniques, languages and tools. The purpose of Experimentation in Software Engineering is to introduce students, teachers, researchers, and practitioners to empirical studies in software engineering, using controlled experiments. The introduction to experimentation is provided through a process perspective, and the focus is on the steps that we have to go through to perform an experiment. The book is divided into three parts. The first part provides a background of theories and methods used in experimentation. Part II then devotes one chapter to each of the five experiment steps: scoping, planning, execution, analysis, and result presentation. Part III completes the presentation with two examples. Assignments and statistical material are provided in appendixes. Overall the book provides indispensable information regarding empirical studies in particular for experiments, but also for case studies, systematic literature reviews, and surveys. It is a revision of the authors’ book, which was published in 2000. In addition, substantial new material, e.g. concerning systematic literature reviews and case study research, is introduced. The book is self-contained and it is suitable as a course book in undergraduate or graduate studies where the need for empirical studies in software engineering is stressed. Exercises and assignments are included to combine the more theoretical material with practical aspects. Researchers will also benefit from the book, learning more about how to conduct empirical studies, and likewise practitioners may use it as a “cookbook” when evaluating new methods or techniques before implementing them in their organization.
Publisher: Springer Science & Business Media
ISBN: 3642290442
Category : Computers
Languages : en
Pages : 249
Book Description
Like other sciences and engineering disciplines, software engineering requires a cycle of model building, experimentation, and learning. Experiments are valuable tools for all software engineers who are involved in evaluating and choosing between different methods, techniques, languages and tools. The purpose of Experimentation in Software Engineering is to introduce students, teachers, researchers, and practitioners to empirical studies in software engineering, using controlled experiments. The introduction to experimentation is provided through a process perspective, and the focus is on the steps that we have to go through to perform an experiment. The book is divided into three parts. The first part provides a background of theories and methods used in experimentation. Part II then devotes one chapter to each of the five experiment steps: scoping, planning, execution, analysis, and result presentation. Part III completes the presentation with two examples. Assignments and statistical material are provided in appendixes. Overall the book provides indispensable information regarding empirical studies in particular for experiments, but also for case studies, systematic literature reviews, and surveys. It is a revision of the authors’ book, which was published in 2000. In addition, substantial new material, e.g. concerning systematic literature reviews and case study research, is introduced. The book is self-contained and it is suitable as a course book in undergraduate or graduate studies where the need for empirical studies in software engineering is stressed. Exercises and assignments are included to combine the more theoretical material with practical aspects. Researchers will also benefit from the book, learning more about how to conduct empirical studies, and likewise practitioners may use it as a “cookbook” when evaluating new methods or techniques before implementing them in their organization.
Design of Experiments for Engineers and Scientists
Author: Jiju Antony
Publisher: Elsevier
ISBN: 0080994199
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry
Publisher: Elsevier
ISBN: 0080994199
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry
Basics of Software Engineering Experimentation
Author: Natalia Juristo
Publisher: Springer Science & Business Media
ISBN: 1475733046
Category : Computers
Languages : en
Pages : 405
Book Description
Basics of Software Engineering Experimentation is a practical guide to experimentation in a field which has long been underpinned by suppositions, assumptions, speculations and beliefs. It demonstrates to software engineers how Experimental Design and Analysis can be used to validate their beliefs and ideas. The book does not assume its readers have an in-depth knowledge of mathematics, specifying the conceptual essence of the techniques to use in the design and analysis of experiments and keeping the mathematical calculations clear and simple. Basics of Software Engineering Experimentation is practically oriented and is specially written for software engineers, all the examples being based on real and fictitious software engineering experiments.
Publisher: Springer Science & Business Media
ISBN: 1475733046
Category : Computers
Languages : en
Pages : 405
Book Description
Basics of Software Engineering Experimentation is a practical guide to experimentation in a field which has long been underpinned by suppositions, assumptions, speculations and beliefs. It demonstrates to software engineers how Experimental Design and Analysis can be used to validate their beliefs and ideas. The book does not assume its readers have an in-depth knowledge of mathematics, specifying the conceptual essence of the techniques to use in the design and analysis of experiments and keeping the mathematical calculations clear and simple. Basics of Software Engineering Experimentation is practically oriented and is specially written for software engineers, all the examples being based on real and fictitious software engineering experiments.
Experimental Methods for Science and Engineering Students
Author: Les Kirkup
Publisher: Cambridge University Press
ISBN: 1108418465
Category : Science
Languages : en
Pages : 239
Book Description
An overview of experimental methods providing practical advice to students seeking guidance with their experimental work.
Publisher: Cambridge University Press
ISBN: 1108418465
Category : Science
Languages : en
Pages : 239
Book Description
An overview of experimental methods providing practical advice to students seeking guidance with their experimental work.
Introduction to Engineering Experimentation
Author: Anthony J. Wheeler
Publisher:
ISBN: 9780131246850
Category : Engineering
Languages : en
Pages : 452
Book Description
Appropriate for undergraduate-level courses in Introduction to Engineering Experimentation found in departments of Mechanical, Aeronautical, Civil, and Electrical Engineering. Wheeler and Ganji introduce many topics that engineers need to master in order to plan, design and document a successful experiment or measurement system. The text offers thorough discussions of topics often ignored or merely touched upon by other texts, including modern computerized data acquisition systems, electrical output measuring devices, and in-depth coverage of experimental uncertainty analysis.
Publisher:
ISBN: 9780131246850
Category : Engineering
Languages : en
Pages : 452
Book Description
Appropriate for undergraduate-level courses in Introduction to Engineering Experimentation found in departments of Mechanical, Aeronautical, Civil, and Electrical Engineering. Wheeler and Ganji introduce many topics that engineers need to master in order to plan, design and document a successful experiment or measurement system. The text offers thorough discussions of topics often ignored or merely touched upon by other texts, including modern computerized data acquisition systems, electrical output measuring devices, and in-depth coverage of experimental uncertainty analysis.
Introduction to Engineering Experimentation
Author: Anthony J. Wheeler
Publisher: Prentice Hall
ISBN: 0131742760
Category : Engineering
Languages : en
Pages : 482
Book Description
KEY BENEFIT An up-to-date, practical introduction to engineering experimentation. Introduction to Engineering Experimentation, 3E introduces many topics that engineers need to master in order to plan, design, and document a successful experiment or measurement system. The text offers a practical approach with current examples and thorough discussions of key topics, including those often ignored or merely touched upon by other texts, such as modern computerized data acquisition systems, electrical output measuring devices, and in-depth coverage of experimental uncertainty analysis. The book includes theoretical coverage and selected applications of statistics and probability, instrument dynamic response, uncertainty analysis and Fourier analysis; detailed descriptions of computerized data acquisition systems and system components, as well as a wide range of common sensors and measurement systems such as strain gages and thermocouples. Worked examples are provided for theoretical topics and sources of uncertainty are presented for measurement systems. For engineering professionals looking for an up-to-date, practical introduction to the field of engineering experimentation.
Publisher: Prentice Hall
ISBN: 0131742760
Category : Engineering
Languages : en
Pages : 482
Book Description
KEY BENEFIT An up-to-date, practical introduction to engineering experimentation. Introduction to Engineering Experimentation, 3E introduces many topics that engineers need to master in order to plan, design, and document a successful experiment or measurement system. The text offers a practical approach with current examples and thorough discussions of key topics, including those often ignored or merely touched upon by other texts, such as modern computerized data acquisition systems, electrical output measuring devices, and in-depth coverage of experimental uncertainty analysis. The book includes theoretical coverage and selected applications of statistics and probability, instrument dynamic response, uncertainty analysis and Fourier analysis; detailed descriptions of computerized data acquisition systems and system components, as well as a wide range of common sensors and measurement systems such as strain gages and thermocouples. Worked examples are provided for theoretical topics and sources of uncertainty are presented for measurement systems. For engineering professionals looking for an up-to-date, practical introduction to the field of engineering experimentation.
Experimentation for Engineers
Author: David Sweet
Publisher: Simon and Schuster
ISBN: 1638356904
Category : Computers
Languages : en
Pages : 246
Book Description
Optimize the performance of your systems with practical experiments used by engineers in the world’s most competitive industries. In Experimentation for Engineers: From A/B testing to Bayesian optimization you will learn how to: Design, run, and analyze an A/B test Break the "feedback loops" caused by periodic retraining of ML models Increase experimentation rate with multi-armed bandits Tune multiple parameters experimentally with Bayesian optimization Clearly define business metrics used for decision-making Identify and avoid the common pitfalls of experimentation Experimentation for Engineers: From A/B testing to Bayesian optimization is a toolbox of techniques for evaluating new features and fine-tuning parameters. You’ll start with a deep dive into methods like A/B testing, and then graduate to advanced techniques used to measure performance in industries such as finance and social media. Learn how to evaluate the changes you make to your system and ensure that your testing doesn’t undermine revenue or other business metrics. By the time you’re done, you’ll be able to seamlessly deploy experiments in production while avoiding common pitfalls. About the technology Does my software really work? Did my changes make things better or worse? Should I trade features for performance? Experimentation is the only way to answer questions like these. This unique book reveals sophisticated experimentation practices developed and proven in the world’s most competitive industries that will help you enhance machine learning systems, software applications, and quantitative trading solutions. About the book Experimentation for Engineers: From A/B testing to Bayesian optimization delivers a toolbox of processes for optimizing software systems. You’ll start by learning the limits of A/B testing, and then graduate to advanced experimentation strategies that take advantage of machine learning and probabilistic methods. The skills you’ll master in this practical guide will help you minimize the costs of experimentation and quickly reveal which approaches and features deliver the best business results. What's inside Design, run, and analyze an A/B test Break the “feedback loops” caused by periodic retraining of ML models Increase experimentation rate with multi-armed bandits Tune multiple parameters experimentally with Bayesian optimization About the reader For ML and software engineers looking to extract the most value from their systems. Examples in Python and NumPy. About the author David Sweet has worked as a quantitative trader at GETCO and a machine learning engineer at Instagram. He teaches in the AI and Data Science master's programs at Yeshiva University. Table of Contents 1 Optimizing systems by experiment 2 A/B testing: Evaluating a modification to your system 3 Multi-armed bandits: Maximizing business metrics while experimenting 4 Response surface methodology: Optimizing continuous parameters 5 Contextual bandits: Making targeted decisions 6 Bayesian optimization: Automating experimental optimization 7 Managing business metrics 8 Practical considerations
Publisher: Simon and Schuster
ISBN: 1638356904
Category : Computers
Languages : en
Pages : 246
Book Description
Optimize the performance of your systems with practical experiments used by engineers in the world’s most competitive industries. In Experimentation for Engineers: From A/B testing to Bayesian optimization you will learn how to: Design, run, and analyze an A/B test Break the "feedback loops" caused by periodic retraining of ML models Increase experimentation rate with multi-armed bandits Tune multiple parameters experimentally with Bayesian optimization Clearly define business metrics used for decision-making Identify and avoid the common pitfalls of experimentation Experimentation for Engineers: From A/B testing to Bayesian optimization is a toolbox of techniques for evaluating new features and fine-tuning parameters. You’ll start with a deep dive into methods like A/B testing, and then graduate to advanced techniques used to measure performance in industries such as finance and social media. Learn how to evaluate the changes you make to your system and ensure that your testing doesn’t undermine revenue or other business metrics. By the time you’re done, you’ll be able to seamlessly deploy experiments in production while avoiding common pitfalls. About the technology Does my software really work? Did my changes make things better or worse? Should I trade features for performance? Experimentation is the only way to answer questions like these. This unique book reveals sophisticated experimentation practices developed and proven in the world’s most competitive industries that will help you enhance machine learning systems, software applications, and quantitative trading solutions. About the book Experimentation for Engineers: From A/B testing to Bayesian optimization delivers a toolbox of processes for optimizing software systems. You’ll start by learning the limits of A/B testing, and then graduate to advanced experimentation strategies that take advantage of machine learning and probabilistic methods. The skills you’ll master in this practical guide will help you minimize the costs of experimentation and quickly reveal which approaches and features deliver the best business results. What's inside Design, run, and analyze an A/B test Break the “feedback loops” caused by periodic retraining of ML models Increase experimentation rate with multi-armed bandits Tune multiple parameters experimentally with Bayesian optimization About the reader For ML and software engineers looking to extract the most value from their systems. Examples in Python and NumPy. About the author David Sweet has worked as a quantitative trader at GETCO and a machine learning engineer at Instagram. He teaches in the AI and Data Science master's programs at Yeshiva University. Table of Contents 1 Optimizing systems by experiment 2 A/B testing: Evaluating a modification to your system 3 Multi-armed bandits: Maximizing business metrics while experimenting 4 Response surface methodology: Optimizing continuous parameters 5 Contextual bandits: Making targeted decisions 6 Bayesian optimization: Automating experimental optimization 7 Managing business metrics 8 Practical considerations
An Introduction to Design of Experiments
Author: Larry B. Barrentine
Publisher: Quality Press
ISBN: 0873891341
Category : Business & Economics
Languages : en
Pages : 122
Book Description
This book is intended for people who have either been intimidated in their attempts to learn about Design of Experiments (DOE) or who have not appreciated the potential of that family of tools in their process improvement efforts. This introduction to DOE showcases the power and utility of this statistical tool while teaching the audience how to plan and analyze an experiment. It is also an attempt to dispel the conception that DOE is reserved only for those with advanced mathematics training. It will be demonstrated that DOE is primarily a logic tool that can be easily grasped and applied, requiring only basic math skills. The book's intent is to introduce the basics and persuade the reader of the power of this tool. The material covered will still be sufficient to support a high proportion of the experiments one may wish to perform. Contents:Introduction, Experiments with Two Factors, The Analytical Procedures, The Eight Steps for Analysis of Effects, Review of the Experimental Procedures, The Spreadsheet Approach, Experiments with Three Factors, Variation Analysis, Analysis with Unreplicated Experiments, Screening Design, Other Types of Design, Problems and Questions, Review of the Basics in Managing DOE, What Inhibits Applications of DOE?
Publisher: Quality Press
ISBN: 0873891341
Category : Business & Economics
Languages : en
Pages : 122
Book Description
This book is intended for people who have either been intimidated in their attempts to learn about Design of Experiments (DOE) or who have not appreciated the potential of that family of tools in their process improvement efforts. This introduction to DOE showcases the power and utility of this statistical tool while teaching the audience how to plan and analyze an experiment. It is also an attempt to dispel the conception that DOE is reserved only for those with advanced mathematics training. It will be demonstrated that DOE is primarily a logic tool that can be easily grasped and applied, requiring only basic math skills. The book's intent is to introduce the basics and persuade the reader of the power of this tool. The material covered will still be sufficient to support a high proportion of the experiments one may wish to perform. Contents:Introduction, Experiments with Two Factors, The Analytical Procedures, The Eight Steps for Analysis of Effects, Review of the Experimental Procedures, The Spreadsheet Approach, Experiments with Three Factors, Variation Analysis, Analysis with Unreplicated Experiments, Screening Design, Other Types of Design, Problems and Questions, Review of the Basics in Managing DOE, What Inhibits Applications of DOE?