Introduction to Data Mining and its Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Introduction to Data Mining and its Applications PDF full book. Access full book title Introduction to Data Mining and its Applications by S. Sumathi. Download full books in PDF and EPUB format.

Introduction to Data Mining and its Applications

Introduction to Data Mining and its Applications PDF Author: S. Sumathi
Publisher: Springer
ISBN: 3540343512
Category : Computers
Languages : en
Pages : 836

Book Description
This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in database systems, and presents a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, artificial intelligence, machine learning, neural networks, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization.

Introduction to Data Mining and its Applications

Introduction to Data Mining and its Applications PDF Author: S. Sumathi
Publisher: Springer
ISBN: 3540343512
Category : Computers
Languages : en
Pages : 836

Book Description
This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in database systems, and presents a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, artificial intelligence, machine learning, neural networks, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization.

Practical Applications of Data Mining

Practical Applications of Data Mining PDF Author: Sang Suh
Publisher: Jones & Bartlett Publishers
ISBN: 0763785873
Category : Computers
Languages : en
Pages : 436

Book Description
Introduction to data mining -- Association rules -- Classification learning -- Statistics for data mining -- Rough sets and bayes theories -- Neural networks -- Clustering -- Fuzzy information retrieval.

Data Mining and Machine Learning Applications

Data Mining and Machine Learning Applications PDF Author: Rohit Raja
Publisher: John Wiley & Sons
ISBN: 1119791782
Category : Computers
Languages : en
Pages : 500

Book Description
DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.

Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence

Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence PDF Author: Trivedi, Shrawan Kumar
Publisher: IGI Global
ISBN: 1522520325
Category : Computers
Languages : en
Pages : 465

Book Description
The development of business intelligence has enhanced the visualization of data to inform and facilitate business management and strategizing. By implementing effective data-driven techniques, this allows for advance reporting tools to cater to company-specific issues and challenges. The Handbook of Research on Advanced Data Mining Techniques and Applications for Business Intelligence is a key resource on the latest advancements in business applications and the use of mining software solutions to achieve optimal decision-making and risk management results. Highlighting innovative studies on data warehousing, business activity monitoring, and text mining, this publication is an ideal reference source for research scholars, management faculty, and practitioners.

Introduction to Data Mining and Its Applications

Introduction to Data Mining and Its Applications PDF Author: S. Sumathi
Publisher: Springer Science & Business Media
ISBN: 3540343504
Category : Computers
Languages : en
Pages : 836

Book Description
This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in data base systems and new data base applications and is also designed to give a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, AI, machine learning, NN, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization. This book is intended for a wide audience of readers who are not necessarily experts in data warehousing and data mining, but are interested in receiving a general introduction to these areas and their many practical applications. Since data mining technology has become a hot topic not only among academic students but also for decision makers, it provides valuable hidden business and scientific intelligence from a large amount of historical data. It is also written for technical managers and executives as well as for technologists interested in learning about data mining.

Data Mining Applications for Empowering Knowledge Societies

Data Mining Applications for Empowering Knowledge Societies PDF Author: Rahman, Hakikur
Publisher: IGI Global
ISBN: 1599046598
Category : Technology & Engineering
Languages : en
Pages : 356

Book Description
Presents an overview of the main issues of data mining, including its classification, regression, clustering, and ethical issues. Provides readers with knowledge enhancing processes as well as a wide spectrum of data mining applications.

Data Mining and Machine Learning

Data Mining and Machine Learning PDF Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 1108473989
Category : Business & Economics
Languages : en
Pages : 779

Book Description
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.

Discovering Knowledge in Data

Discovering Knowledge in Data PDF Author: Daniel T. Larose
Publisher: John Wiley & Sons
ISBN: 0471687537
Category : Computers
Languages : en
Pages : 240

Book Description
Learn Data Mining by doing data mining Data mining can be revolutionary-but only when it's done right. The powerful black box data mining software now available can produce disastrously misleading results unless applied by a skilled and knowledgeable analyst. Discovering Knowledge in Data: An Introduction to Data Mining provides both the practical experience and the theoretical insight needed to reveal valuable information hidden in large data sets. Employing a "white box" methodology and with real-world case studies, this step-by-step guide walks readers through the various algorithms and statistical structures that underlie the software and presents examples of their operation on actual large data sets. Principal topics include: * Data preprocessing and classification * Exploratory analysis * Decision trees * Neural and Kohonen networks * Hierarchical and k-means clustering * Association rules * Model evaluation techniques Complete with scores of screenshots and diagrams to encourage graphical learning, Discovering Knowledge in Data: An Introduction to Data Mining gives students in Business, Computer Science, and Statistics as well as professionals in the field the power to turn any data warehouse into actionable knowledge. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.

Introduction to Data Mining

Introduction to Data Mining PDF Author: Pang-Ning Tan
Publisher: Pearson Education India
ISBN: 9332586055
Category :
Languages : en
Pages : 781

Book Description
Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. Each major topic is organized into two chapters, beginni

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications PDF Author: Ken Yale
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824

Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications