Author: ZAÏDI Abdelhamid
Publisher: Lavoisier
ISBN: 274306451X
Category :
Languages : en
Pages : 360
Book Description
La théorie des probabilités concerne la modélisation du hasard et le calcul des probabilités, son évaluation. La statistique fournit des outils pour la caractérisation du hasard à partir de son observation et constitue un outil incontournable d'aide à la décision. Ce livre présente la théorie des probabilités et de la statistique généralement enseignée aux ingénieurs. Tout en consacrant plus d'espace aux probabilités, il contient tous les sujets essentiels de la statistique. Il comporte trois parties : la première est une introduction à la théorie des probabilités, la deuxième partie est consacrée à l'étude des processus de Markov à temps discret et continu et aux systèmes de files d'attente, la troisième partie aborde des sujets d'usage courant de la statistique inférentielle : l'estimation, la théorie des tests et la régression linéaire. L'accent est mis sur les applications des résultats théoriques. Des exercices corrigés extraits de divers champs d'application et des programmes de simulation accompagnent chaque chapitre de l'ouvrage. Les algorithmes de simulation sont traduits en langage MATLAB en vertu de la simplicité de la syntaxe de ce dernier et de son accessibilité à bon nombre de scientifiques. Les fonctions prédéfinies dans les boîtes à outils accompagnant le logiciel MATLAB ne sont pas systématiquement utilisées afin de permettre au lecteur de traduire les programmes proposés dans n'importe quel autre langage. Ce manuel s'adresse principalement aux étudiants en génie et en sciences appliquées. Il intéresse également les enseignants, les chercheurs, les ingénieurs (génie logiciel, télécommunication, maintenance, finance) et constitue un support de cours dans les écoles d'ingénieurs et les universités.
Probabilités et statistiques à l'usage de l'ingénieur
Author: ZAÏDI Abdelhamid
Publisher: Lavoisier
ISBN: 274306451X
Category :
Languages : en
Pages : 360
Book Description
La théorie des probabilités concerne la modélisation du hasard et le calcul des probabilités, son évaluation. La statistique fournit des outils pour la caractérisation du hasard à partir de son observation et constitue un outil incontournable d'aide à la décision. Ce livre présente la théorie des probabilités et de la statistique généralement enseignée aux ingénieurs. Tout en consacrant plus d'espace aux probabilités, il contient tous les sujets essentiels de la statistique. Il comporte trois parties : la première est une introduction à la théorie des probabilités, la deuxième partie est consacrée à l'étude des processus de Markov à temps discret et continu et aux systèmes de files d'attente, la troisième partie aborde des sujets d'usage courant de la statistique inférentielle : l'estimation, la théorie des tests et la régression linéaire. L'accent est mis sur les applications des résultats théoriques. Des exercices corrigés extraits de divers champs d'application et des programmes de simulation accompagnent chaque chapitre de l'ouvrage. Les algorithmes de simulation sont traduits en langage MATLAB en vertu de la simplicité de la syntaxe de ce dernier et de son accessibilité à bon nombre de scientifiques. Les fonctions prédéfinies dans les boîtes à outils accompagnant le logiciel MATLAB ne sont pas systématiquement utilisées afin de permettre au lecteur de traduire les programmes proposés dans n'importe quel autre langage. Ce manuel s'adresse principalement aux étudiants en génie et en sciences appliquées. Il intéresse également les enseignants, les chercheurs, les ingénieurs (génie logiciel, télécommunication, maintenance, finance) et constitue un support de cours dans les écoles d'ingénieurs et les universités.
Publisher: Lavoisier
ISBN: 274306451X
Category :
Languages : en
Pages : 360
Book Description
La théorie des probabilités concerne la modélisation du hasard et le calcul des probabilités, son évaluation. La statistique fournit des outils pour la caractérisation du hasard à partir de son observation et constitue un outil incontournable d'aide à la décision. Ce livre présente la théorie des probabilités et de la statistique généralement enseignée aux ingénieurs. Tout en consacrant plus d'espace aux probabilités, il contient tous les sujets essentiels de la statistique. Il comporte trois parties : la première est une introduction à la théorie des probabilités, la deuxième partie est consacrée à l'étude des processus de Markov à temps discret et continu et aux systèmes de files d'attente, la troisième partie aborde des sujets d'usage courant de la statistique inférentielle : l'estimation, la théorie des tests et la régression linéaire. L'accent est mis sur les applications des résultats théoriques. Des exercices corrigés extraits de divers champs d'application et des programmes de simulation accompagnent chaque chapitre de l'ouvrage. Les algorithmes de simulation sont traduits en langage MATLAB en vertu de la simplicité de la syntaxe de ce dernier et de son accessibilité à bon nombre de scientifiques. Les fonctions prédéfinies dans les boîtes à outils accompagnant le logiciel MATLAB ne sont pas systématiquement utilisées afin de permettre au lecteur de traduire les programmes proposés dans n'importe quel autre langage. Ce manuel s'adresse principalement aux étudiants en génie et en sciences appliquées. Il intéresse également les enseignants, les chercheurs, les ingénieurs (génie logiciel, télécommunication, maintenance, finance) et constitue un support de cours dans les écoles d'ingénieurs et les universités.
The Theory of Probability
Author: Harold Jeffreys
Publisher: OUP Oxford
ISBN: 0191589675
Category : Science
Languages : en
Pages : 474
Book Description
Another title in the reissued Oxford Classic Texts in the Physical Sciences series, Jeffrey's Theory of Probability, first published in 1939, was the first to develop a fundamental theory of scientific inference based on the ideas of Bayesian statistics. His ideas were way ahead of their time and it is only in the past ten years that the subject of Bayes' factors has been significantly developed and extended. Until recently the two schools of statistics (Bayesian and Frequentist) were distinctly different and set apart. Recent work (aided by increased computer power and availability) has changed all that and today's graduate students and researchers all require an understanding of Bayesian ideas. This book is their starting point.
Publisher: OUP Oxford
ISBN: 0191589675
Category : Science
Languages : en
Pages : 474
Book Description
Another title in the reissued Oxford Classic Texts in the Physical Sciences series, Jeffrey's Theory of Probability, first published in 1939, was the first to develop a fundamental theory of scientific inference based on the ideas of Bayesian statistics. His ideas were way ahead of their time and it is only in the past ten years that the subject of Bayes' factors has been significantly developed and extended. Until recently the two schools of statistics (Bayesian and Frequentist) were distinctly different and set apart. Recent work (aided by increased computer power and availability) has changed all that and today's graduate students and researchers all require an understanding of Bayesian ideas. This book is their starting point.
Séminaire de Probabilités XXXVI
Author: Jacques Azéma
Publisher: Springer
ISBN: 3540361073
Category : Mathematics
Languages : en
Pages : 507
Book Description
The 36th Sminaire de Probabilits contains an advanced course on Logarithmic Sobolev Inequalities by A. Guionnet and B. Zegarlinski, as well as two shorter surveys by L. Pastur and N. O'Connell on the theory of random matrices and their links with stochastic processes. The main themes of the other contributions are Logarithmic Sobolev Inequalities, Stochastic Calculus, Martingale Theory and Filtrations. Besides the traditional readership of the Sminaires, this volume will be useful to researchers in statistical mechanics and mathematical finance.
Publisher: Springer
ISBN: 3540361073
Category : Mathematics
Languages : en
Pages : 507
Book Description
The 36th Sminaire de Probabilits contains an advanced course on Logarithmic Sobolev Inequalities by A. Guionnet and B. Zegarlinski, as well as two shorter surveys by L. Pastur and N. O'Connell on the theory of random matrices and their links with stochastic processes. The main themes of the other contributions are Logarithmic Sobolev Inequalities, Stochastic Calculus, Martingale Theory and Filtrations. Besides the traditional readership of the Sminaires, this volume will be useful to researchers in statistical mechanics and mathematical finance.
French Mathematical Seminars
Author: Nancy D. Anderson
Publisher: American Mathematical Soc.
ISBN: 9780821801291
Category : Mathematics
Languages : en
Pages : 198
Book Description
Intended for mathematics librarians, the list allows librarians to ascertain if a seminaire has been published, which library has it, and the forms of entry under which it has been cataloged.
Publisher: American Mathematical Soc.
ISBN: 9780821801291
Category : Mathematics
Languages : en
Pages : 198
Book Description
Intended for mathematics librarians, the list allows librarians to ascertain if a seminaire has been published, which library has it, and the forms of entry under which it has been cataloged.
Probability Theory I
Author: M. Loeve
Publisher: Springer Science & Business Media
ISBN: 9780387902104
Category : Mathematics
Languages : en
Pages : 452
Book Description
This fourth edition contains several additions. The main ones con cern three closely related topics: Brownian motion, functional limit distributions, and random walks. Besides the power and ingenuity of their methods and the depth and beauty of their results, their importance is fast growing in Analysis as well as in theoretical and applied Proba bility. These additions increased the book to an unwieldy size and it had to be split into two volumes. About half of the first volume is devoted to an elementary introduc tion, then to mathematical foundations and basic probability concepts and tools. The second half is devoted to a detailed study of Independ ence which played and continues to playa central role both by itself and as a catalyst. The main additions consist of a section on convergence of probabilities on metric spaces and a chapter whose first section on domains of attrac tion completes the study of the Central limit problem, while the second one is devoted to random walks. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated. The main addition consists of a chapter on Brownian motion and limit distributions.
Publisher: Springer Science & Business Media
ISBN: 9780387902104
Category : Mathematics
Languages : en
Pages : 452
Book Description
This fourth edition contains several additions. The main ones con cern three closely related topics: Brownian motion, functional limit distributions, and random walks. Besides the power and ingenuity of their methods and the depth and beauty of their results, their importance is fast growing in Analysis as well as in theoretical and applied Proba bility. These additions increased the book to an unwieldy size and it had to be split into two volumes. About half of the first volume is devoted to an elementary introduc tion, then to mathematical foundations and basic probability concepts and tools. The second half is devoted to a detailed study of Independ ence which played and continues to playa central role both by itself and as a catalyst. The main additions consist of a section on convergence of probabilities on metric spaces and a chapter whose first section on domains of attrac tion completes the study of the Central limit problem, while the second one is devoted to random walks. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated. The main addition consists of a chapter on Brownian motion and limit distributions.
A Treatise on Probability
Author: John Maynard Keynes
Publisher:
ISBN:
Category : Probabilities
Languages : en
Pages : 494
Book Description
Publisher:
ISBN:
Category : Probabilities
Languages : en
Pages : 494
Book Description
Lectures on Probability Theory and Statistics
Author: M. Emery
Publisher: Springer
ISBN: 3540450297
Category : Mathematics
Languages : en
Pages : 359
Book Description
This volume contains lectures given at the Saint-Flour Summer School of Probability Theory during 17th Aug. - 3rd Sept. 1998. The contents of the three courses are the following: - Continuous martingales on differential manifolds. - Topics in non-parametric statistics. - Free probability theory. The reader is expected to have a graduate level in probability theory and statistics. This book is of interest to PhD students in probability and statistics or operators theory as well as for researchers in all these fields. The series of lecture notes from the Saint-Flour Probability Summer School can be considered as an encyclopedia of probability theory and related fields.
Publisher: Springer
ISBN: 3540450297
Category : Mathematics
Languages : en
Pages : 359
Book Description
This volume contains lectures given at the Saint-Flour Summer School of Probability Theory during 17th Aug. - 3rd Sept. 1998. The contents of the three courses are the following: - Continuous martingales on differential manifolds. - Topics in non-parametric statistics. - Free probability theory. The reader is expected to have a graduate level in probability theory and statistics. This book is of interest to PhD students in probability and statistics or operators theory as well as for researchers in all these fields. The series of lecture notes from the Saint-Flour Probability Summer School can be considered as an encyclopedia of probability theory and related fields.
Séminaire de Probabilités XLI
Author: Catherine Donati-Martin
Publisher: Springer Science & Business Media
ISBN: 3540779124
Category : Mathematics
Languages : en
Pages : 459
Book Description
Stochastic processes are as usual the main subject of the Séminaire, with contributions on Brownian motion (fractional or other), Lévy processes, martingales and probabilistic finance. Other probabilistic themes are also present: large random matrices, statistical mechanics. The contributions in this volume provide a sampling of recent results on these topics. All contributions with the exception of two are written in English language.
Publisher: Springer Science & Business Media
ISBN: 3540779124
Category : Mathematics
Languages : en
Pages : 459
Book Description
Stochastic processes are as usual the main subject of the Séminaire, with contributions on Brownian motion (fractional or other), Lévy processes, martingales and probabilistic finance. Other probabilistic themes are also present: large random matrices, statistical mechanics. The contributions in this volume provide a sampling of recent results on these topics. All contributions with the exception of two are written in English language.
Mathematical Theory of Probability and Statistics
Author: Richard von Mises
Publisher: Academic Press
ISBN: 1483264025
Category : Mathematics
Languages : en
Pages : 709
Book Description
Mathematical Theory of Probability and Statistics focuses on the contributions and influence of Richard von Mises on the processes, methodologies, and approaches involved in the mathematical theory of probability and statistics. The publication first elaborates on fundamentals, general label space, and basic properties of distributions. Discussions focus on Gaussian distribution, Poisson distribution, mean value variance and other moments, non-countable label space, basic assumptions, operations, and distribution function. The text then ponders on examples of combined operations and summation of chance variables characteristic function. The book takes a look at the asymptotic distribution of the sum of chance variables and probability inference. Topics include inference from a finite number of observations, law of large numbers, asymptotic distributions, limit distribution of the sum of independent discrete random variables, probability of the sum of rare events, and probability density. The text also focuses on the introduction to the theory of statistical functions and multivariate statistics. The publication is a dependable source of information for researchers interested in the mathematical theory of probability and statistics
Publisher: Academic Press
ISBN: 1483264025
Category : Mathematics
Languages : en
Pages : 709
Book Description
Mathematical Theory of Probability and Statistics focuses on the contributions and influence of Richard von Mises on the processes, methodologies, and approaches involved in the mathematical theory of probability and statistics. The publication first elaborates on fundamentals, general label space, and basic properties of distributions. Discussions focus on Gaussian distribution, Poisson distribution, mean value variance and other moments, non-countable label space, basic assumptions, operations, and distribution function. The text then ponders on examples of combined operations and summation of chance variables characteristic function. The book takes a look at the asymptotic distribution of the sum of chance variables and probability inference. Topics include inference from a finite number of observations, law of large numbers, asymptotic distributions, limit distribution of the sum of independent discrete random variables, probability of the sum of rare events, and probability density. The text also focuses on the introduction to the theory of statistical functions and multivariate statistics. The publication is a dependable source of information for researchers interested in the mathematical theory of probability and statistics
A History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace
Author: Isaac Todhunter
Publisher:
ISBN:
Category : Probabilities
Languages : en
Pages : 322
Book Description
Publisher:
ISBN:
Category : Probabilities
Languages : en
Pages : 322
Book Description