Author: Cesar Perez Lopez
Publisher: CESAR PEREZ
ISBN: 1716967090
Category : Computers
Languages : en
Pages : 205
Book Description
En este libro se desarrollarán técnicas de aprendizaje supervisado relativas a regresión. Más concretamente, se profundizará en los modelos lineales de regresión múltiple con toda su problemática de identificación, estimación y diagnosis. Se hace especial hincapié en el tratamiento de la multicolinealidad a través de la Ridge Regression (regresión en cadena) y el método PLS de los mínimos cuadrados parciales. Se dedica una parcela importante del contenido a los modelos de variable dependiente limitada y recuento, con especial mención a los modelos Logit y Probit. Por último se tratan también los modelos predictivos del análisis de la varianza y la covarianza.
MACHINE LEARNING. TÉCNICAS DE APRENDIZAJE SUPERVISADO A TRAVÉS DE R
Author: Cesar Perez Lopez
Publisher: CESAR PEREZ
ISBN: 1716967090
Category : Computers
Languages : en
Pages : 205
Book Description
En este libro se desarrollarán técnicas de aprendizaje supervisado relativas a regresión. Más concretamente, se profundizará en los modelos lineales de regresión múltiple con toda su problemática de identificación, estimación y diagnosis. Se hace especial hincapié en el tratamiento de la multicolinealidad a través de la Ridge Regression (regresión en cadena) y el método PLS de los mínimos cuadrados parciales. Se dedica una parcela importante del contenido a los modelos de variable dependiente limitada y recuento, con especial mención a los modelos Logit y Probit. Por último se tratan también los modelos predictivos del análisis de la varianza y la covarianza.
Publisher: CESAR PEREZ
ISBN: 1716967090
Category : Computers
Languages : en
Pages : 205
Book Description
En este libro se desarrollarán técnicas de aprendizaje supervisado relativas a regresión. Más concretamente, se profundizará en los modelos lineales de regresión múltiple con toda su problemática de identificación, estimación y diagnosis. Se hace especial hincapié en el tratamiento de la multicolinealidad a través de la Ridge Regression (regresión en cadena) y el método PLS de los mínimos cuadrados parciales. Se dedica una parcela importante del contenido a los modelos de variable dependiente limitada y recuento, con especial mención a los modelos Logit y Probit. Por último se tratan también los modelos predictivos del análisis de la varianza y la covarianza.
CIENCIA DE DATOS. DIAGNOSIS DE MODELOS ECONOMÉTRICOS PREDICTIVOS
Author:
Publisher: CESAR PEREZ
ISBN: 1716967554
Category : Business & Economics
Languages : en
Pages : 272
Book Description
En este libro se tratan las fases de Análisis, Estimación y Validación de modelos profundizando en las técnicas de estimación y diagnosis para las tipologías de modelos más habitales. Se `profundiza en las problemáticas de la Autocorrelación, Heterescedasticidad, Multicolinealidad, Endogeneidad, Observaciones Influyentes, Normalidad Residual, Linealidad y otros problemas de diagnosis en los modelos predictivos de aprendizaje supervisado. Todas estas técnicas se ilustrarán con ejemplos significativos que serán resueltos utilizando el software más habitual, como R, SAS, SPSS y STATGRAPHICS.
Publisher: CESAR PEREZ
ISBN: 1716967554
Category : Business & Economics
Languages : en
Pages : 272
Book Description
En este libro se tratan las fases de Análisis, Estimación y Validación de modelos profundizando en las técnicas de estimación y diagnosis para las tipologías de modelos más habitales. Se `profundiza en las problemáticas de la Autocorrelación, Heterescedasticidad, Multicolinealidad, Endogeneidad, Observaciones Influyentes, Normalidad Residual, Linealidad y otros problemas de diagnosis en los modelos predictivos de aprendizaje supervisado. Todas estas técnicas se ilustrarán con ejemplos significativos que serán resueltos utilizando el software más habitual, como R, SAS, SPSS y STATGRAPHICS.
Linear Models in Statistics
Author: Alvin C. Rencher
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690
Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690
Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Diseño de Investigaciones Clínicas en Oftalmología
Author: Juan Carlos Mesa Gutiérrez
Publisher: Lulu.com
ISBN: 1471625168
Category : Science
Languages : es
Pages : 528
Book Description
Con este libro queremos mejorar el nivel científico de los profesionales de la salud prestando especial atención a desdramatizar la temida dureza de la matemática facilitando al máximo la explicación de los conceptos y mostrando la aplicación práctica de los mismos.Este libro pretende ser un punto de partida para diseñar, analizar y/o implementar cualquier tipo de investigación clínica (desde ensayos clínicos, pasando por los metanálisis hasta los estudios de evaluación económica...).Sus objetivos generales son: conocer los conceptos básicos de estadística aplicados a la investigación clínica, saber utilizar los métodos de análisis bivariable y multivariante de uso común en la investigación clínica, entender el concepto de modelización estadística y comprender las técnicas multivariantes de modelización más frecuentemente utilizadas en investigación clínica posibilitando la lectura crítica de artículos e investigaciones clínicas originales publicados en revistas científicas.
Publisher: Lulu.com
ISBN: 1471625168
Category : Science
Languages : es
Pages : 528
Book Description
Con este libro queremos mejorar el nivel científico de los profesionales de la salud prestando especial atención a desdramatizar la temida dureza de la matemática facilitando al máximo la explicación de los conceptos y mostrando la aplicación práctica de los mismos.Este libro pretende ser un punto de partida para diseñar, analizar y/o implementar cualquier tipo de investigación clínica (desde ensayos clínicos, pasando por los metanálisis hasta los estudios de evaluación económica...).Sus objetivos generales son: conocer los conceptos básicos de estadística aplicados a la investigación clínica, saber utilizar los métodos de análisis bivariable y multivariante de uso común en la investigación clínica, entender el concepto de modelización estadística y comprender las técnicas multivariantes de modelización más frecuentemente utilizadas en investigación clínica posibilitando la lectura crítica de artículos e investigaciones clínicas originales publicados en revistas científicas.
CIENCIA DE DATOS. MODELOS CAUSALES
Author:
Publisher: CESAR PEREZ
ISBN: 1716958547
Category : Business & Economics
Languages : en
Pages : 192
Book Description
En este libro se tratan las fases de Análisis, Interpretación y Validación de la Ciencia de Datos, profundizando en las técnicas de modelización predictiva a través de los modelos causales. Se incide en el estudio de la familia más general de los modelos causales o modelos en ecuaciones estructurales, que incluyen los modelos de regresión, los modelos con errores medida y los modelos multiecuacionales. Se estudiarán los modelos de análisis confirmatorio y el modelo completo de estructura de la covarianza a través de las etapas de especificación, identificación, estimación y diagnosis. Todas estas técnicas se ilustrarán con ejemplos significativos que serán resueltos utilizando el software más actual y habitual para trabajar con modelos causales como es SAS.
Publisher: CESAR PEREZ
ISBN: 1716958547
Category : Business & Economics
Languages : en
Pages : 192
Book Description
En este libro se tratan las fases de Análisis, Interpretación y Validación de la Ciencia de Datos, profundizando en las técnicas de modelización predictiva a través de los modelos causales. Se incide en el estudio de la familia más general de los modelos causales o modelos en ecuaciones estructurales, que incluyen los modelos de regresión, los modelos con errores medida y los modelos multiecuacionales. Se estudiarán los modelos de análisis confirmatorio y el modelo completo de estructura de la covarianza a través de las etapas de especificación, identificación, estimación y diagnosis. Todas estas técnicas se ilustrarán con ejemplos significativos que serán resueltos utilizando el software más actual y habitual para trabajar con modelos causales como es SAS.
Base-line health and nutrition survey
Beyond Multiple Linear Regression
Author: Paul Roback
Publisher: CRC Press
ISBN: 1439885400
Category : Mathematics
Languages : en
Pages : 436
Book Description
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Publisher: CRC Press
ISBN: 1439885400
Category : Mathematics
Languages : en
Pages : 436
Book Description
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Business Forecasting
Author: John E. Hanke
Publisher: Pearson Educación
ISBN: 9789702607595
Category : Business & Economics
Languages : en
Pages : 544
Book Description
This top-selling book presents, in a straightforward, application-driven manner, the basic statistical techniques necessary for preparing individual business forecasts and long-range plans. The emphasis is on the application of techniques by management for decision-making. This essential book provides understandable coverage of several important topics, often omitted from other books, including econometrics; autocorrelation analysis and the use of Box-Jenkins techniques; judgmental forecasting techniques; and the means of selecting the correct forecasting technique and analyzing data. The book also reviews statistical concepts prior to introducing material that requires an understanding of those concepts. The sixth edition of Business Forecasting has been revised to include instructions on using Excel spreadsheets and the statistical package MINITAB in forecasting. An essential reference for every professional in a business of any size, from large corporations to small family-run firms.
Publisher: Pearson Educación
ISBN: 9789702607595
Category : Business & Economics
Languages : en
Pages : 544
Book Description
This top-selling book presents, in a straightforward, application-driven manner, the basic statistical techniques necessary for preparing individual business forecasts and long-range plans. The emphasis is on the application of techniques by management for decision-making. This essential book provides understandable coverage of several important topics, often omitted from other books, including econometrics; autocorrelation analysis and the use of Box-Jenkins techniques; judgmental forecasting techniques; and the means of selecting the correct forecasting technique and analyzing data. The book also reviews statistical concepts prior to introducing material that requires an understanding of those concepts. The sixth edition of Business Forecasting has been revised to include instructions on using Excel spreadsheets and the statistical package MINITAB in forecasting. An essential reference for every professional in a business of any size, from large corporations to small family-run firms.
Introduction to Linear Regression Analysis
Author: Douglas C. Montgomery
Publisher: John Wiley & Sons
ISBN: 1119180171
Category : Mathematics
Languages : en
Pages : 679
Book Description
Praise for the Fourth Edition "As with previous editions, the authors have produced a leading textbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to the fundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today’s cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences. Following a general introduction to regression modeling, including typical applications, a host of technical tools are outlined such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book then discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. The Fifth Edition features numerous newly added topics, including: A chapter on regression analysis of time series data that presents the Durbin-Watson test and other techniques for detecting autocorrelation as well as parameter estimation in time series regression models Regression models with random effects in addition to a discussion on subsampling and the importance of the mixed model Tests on individual regression coefficients and subsets of coefficients Examples of current uses of simple linear regression models and the use of multiple regression models for understanding patient satisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors have incorporated JMP and the freely available R software to illustrate the discussed techniques and procedures in this new edition. Numerous exercises have been added throughout, allowing readers to test their understanding of the material. Introduction to Linear Regression Analysis, Fifth Edition is an excellent book for statistics and engineering courses on regression at the upper-undergraduate and graduate levels. The book also serves as a valuable, robust resource for professionals in the fields of engineering, life and biological sciences, and the social sciences.
Publisher: John Wiley & Sons
ISBN: 1119180171
Category : Mathematics
Languages : en
Pages : 679
Book Description
Praise for the Fourth Edition "As with previous editions, the authors have produced a leading textbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to the fundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today’s cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences. Following a general introduction to regression modeling, including typical applications, a host of technical tools are outlined such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book then discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. The Fifth Edition features numerous newly added topics, including: A chapter on regression analysis of time series data that presents the Durbin-Watson test and other techniques for detecting autocorrelation as well as parameter estimation in time series regression models Regression models with random effects in addition to a discussion on subsampling and the importance of the mixed model Tests on individual regression coefficients and subsets of coefficients Examples of current uses of simple linear regression models and the use of multiple regression models for understanding patient satisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors have incorporated JMP and the freely available R software to illustrate the discussed techniques and procedures in this new edition. Numerous exercises have been added throughout, allowing readers to test their understanding of the material. Introduction to Linear Regression Analysis, Fifth Edition is an excellent book for statistics and engineering courses on regression at the upper-undergraduate and graduate levels. The book also serves as a valuable, robust resource for professionals in the fields of engineering, life and biological sciences, and the social sciences.