Interpretable Machine Learning PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Interpretable Machine Learning PDF full book. Access full book title Interpretable Machine Learning by Christoph Molnar. Download full books in PDF and EPUB format.

Interpretable Machine Learning

Interpretable Machine Learning PDF Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Artificial intelligence
Languages : en
Pages : 320

Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Interpretable Machine Learning

Interpretable Machine Learning PDF Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Artificial intelligence
Languages : en
Pages : 320

Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python PDF Author: Serg Masís
Publisher: Packt Publishing Ltd
ISBN: 1800206577
Category : Computers
Languages : en
Pages : 737

Book Description
A deep and detailed dive into the key aspects and challenges of machine learning interpretability, complete with the know-how on how to overcome and leverage them to build fairer, safer, and more reliable models Key Features Learn how to extract easy-to-understand insights from any machine learning model Become well-versed with interpretability techniques to build fairer, safer, and more reliable models Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models Book DescriptionDo you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning. What you will learn Recognize the importance of interpretability in business Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes Become well-versed in interpreting models with model-agnostic methods Visualize how an image classifier works and what it learns Understand how to mitigate the influence of bias in datasets Discover how to make models more reliable with adversarial robustness Use monotonic constraints to make fairer and safer models Who this book is for This book is primarily written for data scientists, machine learning developers, and data stewards who find themselves under increasing pressures to explain the workings of AI systems, their impacts on decision making, and how they identify and manage bias. It’s also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a solid grasp on the Python programming language and ML fundamentals is needed to follow along.

Explainable and Interpretable Models in Computer Vision and Machine Learning

Explainable and Interpretable Models in Computer Vision and Machine Learning PDF Author: Hugo Jair Escalante
Publisher: Springer
ISBN: 3319981315
Category : Computers
Languages : en
Pages : 299

Book Description
This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations

Interpretable Artificial Intelligence: A Perspective of Granular Computing

Interpretable Artificial Intelligence: A Perspective of Granular Computing PDF Author: Witold Pedrycz
Publisher: Springer Nature
ISBN: 3030649490
Category : Technology & Engineering
Languages : en
Pages : 430

Book Description
This book offers a comprehensive treatise on the recent pursuits of Artificial Intelligence (AI) – Explainable Artificial Intelligence (XAI) by casting the crucial features of interpretability and explainability in the original framework of Granular Computing. The innovative perspective established with the aid of information granules provides a high level of human centricity and transparency central to the development of AI constructs. The chapters reflect the breadth of the area and cover recent developments in the methodology, advanced algorithms and applications of XAI to visual analytics, knowledge representation, learning and interpretation. The book appeals to a broad audience including researchers and practitioners interested in gaining exposure to the rapidly growing body of knowledge in AI and intelligent systems.

Statistical Learning with Sparsity

Statistical Learning with Sparsity PDF Author: Trevor Hastie
Publisher: CRC Press
ISBN: 1498712177
Category : Business & Economics
Languages : en
Pages : 354

Book Description
Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Statistical Machine Learning for Human Behaviour Analysis

Statistical Machine Learning for Human Behaviour Analysis PDF Author: Thomas Moeslund
Publisher: MDPI
ISBN: 3039362283
Category : Technology & Engineering
Languages : en
Pages : 300

Book Description
This Special Issue focused on novel vision-based approaches, mainly related to computer vision and machine learning, for the automatic analysis of human behaviour. We solicited submissions on the following topics: information theory-based pattern classification, biometric recognition, multimodal human analysis, low resolution human activity analysis, face analysis, abnormal behaviour analysis, unsupervised human analysis scenarios, 3D/4D human pose and shape estimation, human analysis in virtual/augmented reality, affective computing, social signal processing, personality computing, activity recognition, human tracking in the wild, and application of information-theoretic concepts for human behaviour analysis. In the end, 15 papers were accepted for this special issue. These papers, that are reviewed in this editorial, analyse human behaviour from the aforementioned perspectives, defining in most of the cases the state of the art in their corresponding field.

Hands-On Machine Learning with R

Hands-On Machine Learning with R PDF Author: Brad Boehmke
Publisher: CRC Press
ISBN: 1000730433
Category : Business & Economics
Languages : en
Pages : 374

Book Description
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.

An Introduction to Statistical Learning

An Introduction to Statistical Learning PDF Author: Gareth James
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617

Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Interpretable Statistical Learning

Interpretable Statistical Learning PDF Author: Beomseok Seo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Interpretability of machine learning models is important in critical applications to attain trust of users. Despite their strong performance, black-box machine learning models often meet resistance in usage, especially in areas such as economics, social science, healthcare industry, and administrative decision making. This dissertation explores methods to improve 'human interpretability' for both supervised and unsupervised machine learning. I approach this topic by building statistical models with relatively low complexity and developing post-hoc model-agnostic tools. This dissertation consists of three projects. In the first project, we propose a new method to estimate a mixture of linear models (MLM) for regression or classification that is relatively easy to interpret. We use DNN as a proxy of the optimal prediction function so that MLM can be effectively estimated. We propose visualization methods and quantitative approaches to interpret the predictor by MLM. Experiments show that the new method allows us to trade-off interpretability and accuracy. MLM estimated under the guidance of a trained DNN fills the gap between a highly explainable linear statistical model and a highly accurate but difficult to interpret predictor. In the second project, we develop a new block-wise variable selection method for clustering by exploiting the latent states of the hidden Markov model on variable blocks or the Gaussian mixture model. Specifically, the variable blocks are formed by depth-first-search on a dendrogram created based on the mutual information between any pair of variables. It is demonstrated that the latent states of the variable blocks together with the mixture model parameters can represent the original data effectively and much more compactly. We thus cluster the data using the latent states and select variables according to the relationship between the states and the clusters. As true class labels are unknown in the unsupervised setting, we first generate more refined clusters, namely, semi-clusters, for variable selection and then determine the final clusters based on the dimension reduced data. The new method increases the interpretability of high-dimensional clustering by effectively reducing the model complexity and selecting variables while retains the comparable clustering accuracy to other widely used methods. In the third project, we propose a new framework to interpret and validate clustering results for any baseline methods. We exploit the optimal transport alignment and the bootstrapping method to quantify the variation of clustering results at the levels of both overall partitions and individual clusters. Set relationships between clusters such as one-to-one match, split, and merge can be revealed. A covering point set for each cluster, a concept kin to the confidence interval, is proposed. The tools we have developed here will help understand the model behavior of the baseline clustering method. Experimental results on both simulated and real datasets are provided. The corresponding R package OTclust is available on CRAN.

Statistical Learning for Biomedical Data

Statistical Learning for Biomedical Data PDF Author: James D. Malley
Publisher: Cambridge University Press
ISBN: 1139496859
Category : Medical
Languages : en
Pages : 301

Book Description
This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random ForestsTM, neural nets, support vector machines, nearest neighbors and boosting.