Interpretable Machine Learning and Generative Modeling with Mixed Tabular Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Interpretable Machine Learning and Generative Modeling with Mixed Tabular Data PDF full book. Access full book title Interpretable Machine Learning and Generative Modeling with Mixed Tabular Data by Kristin Blesch. Download full books in PDF and EPUB format.

Interpretable Machine Learning and Generative Modeling with Mixed Tabular Data

Interpretable Machine Learning and Generative Modeling with Mixed Tabular Data PDF Author: Kristin Blesch
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Explainable artificial intelligence or interpretable machine learning techniques aim to shed light on the behavior of opaque machine learning algorithms, yet often fail to acknowledge the challenges real-world data imposes on the task. Specifically, the fact that empirical tabular datasets may consist of both continuous and categorical features (mixed data) and typically exhibit dependency structures is frequently overlooked. This work uses a statistical perspective to illuminate the far-reaching implications of mixed data and dependency structures for interpretability in machine learning. Several interpretability methods are advanced with a particular focus on this kind of data, evaluating their performance on simulated and real data sets. Further, this cumulative thesis emphasizes that generating synthetic data is a crucial subroutine for many interpretability methods. Therefore, this thesis also advances methodology in generative modeling concerning mixed tabular data, presenting a tree-based approach for density estimation and data generation, accompanied by a user-friendly software implementation in the Python programming language.

Interpretable Machine Learning and Generative Modeling with Mixed Tabular Data

Interpretable Machine Learning and Generative Modeling with Mixed Tabular Data PDF Author: Kristin Blesch
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Explainable artificial intelligence or interpretable machine learning techniques aim to shed light on the behavior of opaque machine learning algorithms, yet often fail to acknowledge the challenges real-world data imposes on the task. Specifically, the fact that empirical tabular datasets may consist of both continuous and categorical features (mixed data) and typically exhibit dependency structures is frequently overlooked. This work uses a statistical perspective to illuminate the far-reaching implications of mixed data and dependency structures for interpretability in machine learning. Several interpretability methods are advanced with a particular focus on this kind of data, evaluating their performance on simulated and real data sets. Further, this cumulative thesis emphasizes that generating synthetic data is a crucial subroutine for many interpretability methods. Therefore, this thesis also advances methodology in generative modeling concerning mixed tabular data, presenting a tree-based approach for density estimation and data generation, accompanied by a user-friendly software implementation in the Python programming language.

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python PDF Author: Serg Masís
Publisher: Packt Publishing Ltd
ISBN: 1800206577
Category : Computers
Languages : en
Pages : 737

Book Description
A deep and detailed dive into the key aspects and challenges of machine learning interpretability, complete with the know-how on how to overcome and leverage them to build fairer, safer, and more reliable models Key Features Learn how to extract easy-to-understand insights from any machine learning model Become well-versed with interpretability techniques to build fairer, safer, and more reliable models Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models Book DescriptionDo you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning. What you will learn Recognize the importance of interpretability in business Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes Become well-versed in interpreting models with model-agnostic methods Visualize how an image classifier works and what it learns Understand how to mitigate the influence of bias in datasets Discover how to make models more reliable with adversarial robustness Use monotonic constraints to make fairer and safer models Who this book is for This book is primarily written for data scientists, machine learning developers, and data stewards who find themselves under increasing pressures to explain the workings of AI systems, their impacts on decision making, and how they identify and manage bias. It’s also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a solid grasp on the Python programming language and ML fundamentals is needed to follow along.

Synthesizing Tabular Data Using Conditional GAN

Synthesizing Tabular Data Using Conditional GAN PDF Author: Lei Xu (S.M.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 93

Book Description
In data science, the ability to model the distribution of rows in tabular data and generate realistic synthetic data enables various important applications including data compression, data disclosure, and privacy-preserving machine learning. However, because tabular data usually contains a mix of discrete and continuous columns, building such a model is a non-trivial task. Continuous columns may have multiple modes, while discrete columns are sometimes imbalanced, making modeling difficult. To address this problem, I took two major steps. (1) I designed SDGym, a thorough benchmark, to compare existing models, identify different properties of tabular data and analyze how these properties challenge different models. Our experimental results show that statistical models, such as Bayesian networks, that are constrained to a fixed family of available distributions cannot model tabular data effectively, especially when both continuous and discrete columns are included. Recently proposed deep generative models are capable of modeling more sophisticated distributions, but cannot outperform Bayesian network models in practice, because the network structure and learning procedure are not optimized for tabular data which may contain non-Gaussian continuous columns and imbalanced discrete columns. (2) To address these problems, I designed CTGAN, which uses a conditional generative adversarial network to address the challenges in modeling tabular data. Because CTGAN uses reversible data transformations and is trained by re-sampling the data, it can address common challenges in synthetic data generation. I evaluated CTGAN on the benchmark and showed that it consistently and significantly outperforms existing statistical and deep learning models.

Deep Generative Models, and Data Augmentation, Labelling, and Imperfections

Deep Generative Models, and Data Augmentation, Labelling, and Imperfections PDF Author: Sandy Engelhardt
Publisher: Springer Nature
ISBN: 3030882101
Category : Computers
Languages : en
Pages : 278

Book Description
This book constitutes the refereed proceedings of the First MICCAI Workshop on Deep Generative Models, DG4MICCAI 2021, and the First MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2021, held in conjunction with MICCAI 2021, in October 2021. The workshops were planned to take place in Strasbourg, France, but were held virtually due to the COVID-19 pandemic. DG4MICCAI 2021 accepted 12 papers from the 17 submissions received. The workshop focusses on recent algorithmic developments, new results, and promising future directions in Deep Generative Models. Deep generative models such as Generative Adversarial Network (GAN) and Variational Auto-Encoder (VAE) are currently receiving widespread attention from not only the computer vision and machine learning communities, but also in the MIC and CAI community. For DALI 2021, 15 papers from 32 submissions were accepted for publication. They focus on rigorous study of medical data related to machine learning systems.

Toward Interpretable Machine Learning, with Applications to Large-scale Industrial Systems Data

Toward Interpretable Machine Learning, with Applications to Large-scale Industrial Systems Data PDF Author: Graziano Mita
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The contributions presented in this work are two-fold. We first provide a general overview of explanations and interpretable machine learning, making connections with different fields, including sociology, psychology, and philosophy, introducing a taxonomy of popular explainability approaches and evaluation methods. We subsequently focus on rule learning, a specific family of transparent models, and propose a novel rule-based classification approach, based on monotone Boolean function synthesis: LIBRE. LIBRE is an ensemble method that combines the candidate rules learned by multiple bottom-up learners with a simple union, in order to obtain a final intepretable rule set. Our method overcomes most of the limitations of state-of-the-art competitors: it successfully deals with both balanced and imbalanced datasets, efficiently achieving superior performance and higher interpretability in real datasets. Interpretability of data representations constitutes the second broad contribution to this work. We restrict our attention to disentangled representation learning, and, in particular, VAE-based disentanglement methods to automatically learn representations consisting of semantically meaningful features. Recent contributions have demonstrated that disentanglement is impossible in purely unsupervised settings. Nevertheless, incorporating inductive biases on models and data may overcome such limitations. We present a new disentanglement method - IDVAE - with theoretical guarantees on disentanglement, deriving from the employment of an optimal exponential factorized prior, conditionally dependent on auxiliary variables complementing input observations. We additionally propose a semi-supervised version of our method. Our experimental campaign on well-established datasets in the literature shows that IDVAE often beats its competitors according to several disentanglement metrics.

Introduction of High-dimensional Interpretable Machine Learning Models and Their Applications

Introduction of High-dimensional Interpretable Machine Learning Models and Their Applications PDF Author: Simon Bussy
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
This dissertation focuses on the introduction of new interpretable machine learning methods in a high-dimensional setting. We developped first the C-mix, a mixture model of censored durations that automatically detects subgroups based on the risk that the event under study occurs early; then the binarsity penalty combining a weighted total variation penalty with a linear constraint per block, that applies on one-hot encoding of continuous features; and finally the binacox model that uses the binarsity penalty within a Cox model to automatically detect cut-points in the continuous features. For each method, theoretical properties are established: algorithm convergence, non-asymptotic oracle inequalities, and comparison studies with state-of-the-art methods are carried out on both simulated and real data. All proposed methods give good results in terms of prediction performances, computing time, as well as interpretability abilities.

Variational Methods for Machine Learning with Applications to Deep Networks

Variational Methods for Machine Learning with Applications to Deep Networks PDF Author: Lucas Pinheiro Cinelli
Publisher: Springer
ISBN: 9783030706814
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere. Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning; Presents Statistical Inference concepts, offering a set of elucidative examples, practical aspects, and pseudo-codes; Every chapter includes hands-on examples and exercises and a website features lecture slides, additional examples, and other support material.

Interactive and Interpretable Machine Learning Models for Human Machine Collaboration

Interactive and Interpretable Machine Learning Models for Human Machine Collaboration PDF Author: Been Kim
Publisher:
ISBN:
Category :
Languages : en
Pages : 143

Book Description
I envision a system that enables successful collaborations between humans and machine learning models by harnessing the relative strength to accomplish what neither can do alone. Machine learning techniques and humans have skills that complement each other - machine learning techniques are good at computation on data at the lowest level of granularity, whereas people are better at abstracting knowledge from their experience, and transferring the knowledge across domains. The goal of this thesis is to develop a framework for human-in-the-loop machine learning that enables people to interact effectively with machine learning models to make better decisions, without requiring in-depth knowledge about machine learning techniques. Many of us interact with machine learning systems everyday. Systems that mine data for product recommendations, for example, are ubiquitous. However these systems compute their output without end-user involvement, and there are typically no life or death consequences in the case the machine learning result is not acceptable to the user. In contrast, domains where decisions can have serious consequences (e.g., emergency response panning, medical decision-making), require the incorporation of human experts' domain knowledge. These systems also must be transparent to earn experts' trust and be adopted in their workflow. The challenge addressed in this thesis is that traditional machine learning systems are not designed to extract domain experts' knowledge from natural workflow, or to provide pathways for the human domain expert to directly interact with the algorithm to interject their knowledge or to better understand the system output. For machine learning systems to make a real-world impact in these important domains, these systems must be able to communicate with highly skilled human experts to leverage their judgment and expertise, and share useful information or patterns from the data. In this thesis, I bridge this gap by building human-in-the-loop machine learning models and systems that compute and communicate machine learning results in ways that are compatible with the human decision-making process, and that can readily incorporate human experts' domain knowledge. I start by building a machine learning model that infers human teams' planning decisions from the structured form of natural language of team meetings. I show that the model can infer a human teams' final plan with 86% accuracy on average. I then design an interpretable machine learning model then "makes sense to humans" by exploring and communicating patterns and structure in data to support human decision-making. Through human subject experiments, I show that this interpretable machine learning model offers statistically significant quantitative improvements in interpretability while preserving clustering performance. Finally, I design a machine learning model that supports transparent interaction with humans without requiring that a user has expert knowledge of machine learning technique. I build a human-in-the-loop machine learning system that incorporates human feedback and communicates its internal states to humans, using an intuitive medium for interaction with the machine learning model. I demonstrate the application of this model for an educational domain in which teachers cluster programming assignments to streamline the grading process.

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning PDF Author: Wojciech Samek
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435

Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Towards Interpretable Machine Learning with Applications to Clinical Decision Support

Towards Interpretable Machine Learning with Applications to Clinical Decision Support PDF Author: Zhicheng Cui
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 124

Book Description
Machine learning models have achieved impressive predictive performance in various applications such as image classification and object recognition. However, understanding how machine learning models make decisions is essential when deploying those models in critical areas such as clinical prediction and market analysis, where prediction accuracy is not the only concern. For example, in the clinical prediction of ICU transfers, in addition to accurate predictions, doctors need to know the contributing factors that triggered the alert, which factors can be quickly altered to prevent the ICU transfer. While interpretable machine learning has been extensively studied for years, challenges remain as among all the advanced machine learning classifiers, few of them try to address both of those needs. In this dissertation, we point out the imperative properties of interpretable machine learning, especially for clinical decision support and explore three related directions. First, we propose a post-analysis method to extract actionable knowledge from random forest and additive tree models. Then, we equip the logistic regression model with nonlinear separability while preserving its interpretability. Last but not least, we propose an interpretable factored generalized additive model that allows feature interactions to further increase the prediction accuracy. In the end, we propose a deep learning framework for 30-day mortality prediction, that can handle heterogeneous data types.