Author: D. J. Gooch
Publisher: Springer Science & Business Media
ISBN: 9400934157
Category : Science
Languages : en
Pages : 346
Book Description
The design and assessment of modern high temperature plant demands an understanding of the creep and rupture behaviour of materials under multi axial stress states. Examples include thread roots in steam turbine casing bolts, branch connections in nuclear pressure vessels and blade root fixings in gas or steam turbine rotors. At one extreme the simple notch weakening/notch strengthening characterization of the material by circumferentially vee-notched uniaxial rupture tests, as specified in many national standards, may be sufficient. These were originally intended to model thread roots and their conservatism is such that they frequently are considered adequate for design purposes. At the other extreme full size or model component tests may be employed to determine the safety margins built into design codes. This latter approach is most commonly used for internally pressurized components, particularly where welds are involved. However, such tests are extremely expensive and the use of modern stress analysis techniques combined with a detailed knowledge of multiaxial properties offers a more economic alternative. Design codes, by their nature, must ensure conservatism and are based on a material's minimum specified properties. In the case of high temperature components the extension of life beyond the nominal design figure, say from 100000 to 200000 h, offers very significant economic benefits. However, this may require a more detailed understanding of the multiaxial behaviour of a specific material than was available at the design stage.
Techniques for Multiaxial Creep Testing
Author: D. J. Gooch
Publisher: Springer Science & Business Media
ISBN: 9400934157
Category : Science
Languages : en
Pages : 346
Book Description
The design and assessment of modern high temperature plant demands an understanding of the creep and rupture behaviour of materials under multi axial stress states. Examples include thread roots in steam turbine casing bolts, branch connections in nuclear pressure vessels and blade root fixings in gas or steam turbine rotors. At one extreme the simple notch weakening/notch strengthening characterization of the material by circumferentially vee-notched uniaxial rupture tests, as specified in many national standards, may be sufficient. These were originally intended to model thread roots and their conservatism is such that they frequently are considered adequate for design purposes. At the other extreme full size or model component tests may be employed to determine the safety margins built into design codes. This latter approach is most commonly used for internally pressurized components, particularly where welds are involved. However, such tests are extremely expensive and the use of modern stress analysis techniques combined with a detailed knowledge of multiaxial properties offers a more economic alternative. Design codes, by their nature, must ensure conservatism and are based on a material's minimum specified properties. In the case of high temperature components the extension of life beyond the nominal design figure, say from 100000 to 200000 h, offers very significant economic benefits. However, this may require a more detailed understanding of the multiaxial behaviour of a specific material than was available at the design stage.
Publisher: Springer Science & Business Media
ISBN: 9400934157
Category : Science
Languages : en
Pages : 346
Book Description
The design and assessment of modern high temperature plant demands an understanding of the creep and rupture behaviour of materials under multi axial stress states. Examples include thread roots in steam turbine casing bolts, branch connections in nuclear pressure vessels and blade root fixings in gas or steam turbine rotors. At one extreme the simple notch weakening/notch strengthening characterization of the material by circumferentially vee-notched uniaxial rupture tests, as specified in many national standards, may be sufficient. These were originally intended to model thread roots and their conservatism is such that they frequently are considered adequate for design purposes. At the other extreme full size or model component tests may be employed to determine the safety margins built into design codes. This latter approach is most commonly used for internally pressurized components, particularly where welds are involved. However, such tests are extremely expensive and the use of modern stress analysis techniques combined with a detailed knowledge of multiaxial properties offers a more economic alternative. Design codes, by their nature, must ensure conservatism and are based on a material's minimum specified properties. In the case of high temperature components the extension of life beyond the nominal design figure, say from 100000 to 200000 h, offers very significant economic benefits. However, this may require a more detailed understanding of the multiaxial behaviour of a specific material than was available at the design stage.
Proceedings of the Conference on Welding Creep-Resistant Steels, 17-18 February, 1970
Author:
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
Energy Research Abstracts
Welding Journal
Metal Construction and British Welding Journal
Author:
Publisher:
ISBN:
Category : Welding
Languages : en
Pages : 388
Book Description
Includes two special issues per year containing the proceedings of a major conference.
Publisher:
ISBN:
Category : Welding
Languages : en
Pages : 388
Book Description
Includes two special issues per year containing the proceedings of a major conference.
Materials for Advanced Power Engineering 1994
Author: D. Coutsouradis
Publisher: Springer Science & Business Media
ISBN: 9780792330745
Category : Science
Languages : en
Pages : 978
Book Description
The role of energy in the modern world goes beyond mere technology and economics to influence welfare, the environment, the quality of life and, in broad terms, civilization itself. Since the Industrial Revolution, energy conservation technology has been at the forefront of the innovation required to satisfy the needs of mankind and, more than any other, this technology has always depended on the performance of the materials used.
Publisher: Springer Science & Business Media
ISBN: 9780792330745
Category : Science
Languages : en
Pages : 978
Book Description
The role of energy in the modern world goes beyond mere technology and economics to influence welfare, the environment, the quality of life and, in broad terms, civilization itself. Since the Industrial Revolution, energy conservation technology has been at the forefront of the innovation required to satisfy the needs of mankind and, more than any other, this technology has always depended on the performance of the materials used.
Reactor Core Materials
Nuclear Science Abstracts
Mechanical Behaviour of Materials-IV
Author: Janne Carlsson
Publisher: Pergamon
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 702
Book Description
Publisher: Pergamon
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 702
Book Description
Deformation and Fracture Behaviour of Polymer Materials
Author: Wolfgang Grellmann
Publisher: Springer
ISBN: 3319418793
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
This book covers the most recent advances in the deformation and fracture behaviour of polymer material. It provides deeper insight into related morphology–property correlations of thermoplastics, elastomers and polymer resins. Each chapter of this book gives a comprehensive review of state-of-the-art methods of materials testing and diagnostics, tailored for plastic pipes, films and adhesive systems as well as elastomeric components and others. The investigation of deformation and fracture behaviour using the experimental methods of fracture mechanics has been the subject of intense research during the last decade. In a systematic manner, modern aspects of fracture mechanics in the industrial application of polymers for bridging basic research and industrial development are illustrated by multifarious examples of innovative materials usage. This book will be of value to scientists, engineers and in polymer materials science.
Publisher: Springer
ISBN: 3319418793
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
This book covers the most recent advances in the deformation and fracture behaviour of polymer material. It provides deeper insight into related morphology–property correlations of thermoplastics, elastomers and polymer resins. Each chapter of this book gives a comprehensive review of state-of-the-art methods of materials testing and diagnostics, tailored for plastic pipes, films and adhesive systems as well as elastomeric components and others. The investigation of deformation and fracture behaviour using the experimental methods of fracture mechanics has been the subject of intense research during the last decade. In a systematic manner, modern aspects of fracture mechanics in the industrial application of polymers for bridging basic research and industrial development are illustrated by multifarious examples of innovative materials usage. This book will be of value to scientists, engineers and in polymer materials science.