Author: Anna Veronika Schepers
Publisher: Universitätsverlag Göttingen
ISBN: 3863955676
Category :
Languages : en
Pages : 247
Book Description
The mechanical properties of cells are largely determined by the cytoskeleton. The cytoskeleton is an intricate and complex structure formed by protein filaments, motor proteins, and crosslinkers. The three main types of protein filaments are microtubules, actin filaments, and intermediate filaments ( IFs ). Whereas the proteins that form microtubules and actin filaments are exceptionally conserved throughout cell types and organisms, the family of IFs is diverse. For example, the IF protein vimentin is expressed in relatively motile fibroblasts, and keratin IFs are found in epithelial cells. This variety of IF proteins might therefore be linked to the various mechanical properties of different cell types. In the scope of this thesis, I combine studies of IF mechanics on different time scales and in systems of increasing complexity, from single filaments to networks in cells. This multiscale approach allows for the simplification necessary to interpret observations while adding increasing physiological context in subsequent experiments. We especially focus on the tunability of the IF mechanics by environmental cues in these increasingly complex systems. In a series of experiments, including single filament elongation studies, single filament stretching measurements with optical tweezers, filament-filament interaction measurements with four optical tweezers, microrheology, and isotropic cell stretching, we characterize how electrostatic (pH and ion concentration) and hydrophobic interactions (detergent) provide various mechanisms by which the mechanics of the IF cytoskeleton can be tuned. These studies reveal how small changes, such as charge shifts, influence IF mechanics on multiple scales. In combination with simulations, we determine the mechanisms by which charge shifts alter single vimentin filament mechanics and we extract energy landscapes for interactions between single filaments. Such insights will provide a deeper understanding of the mechanisms by which cells can maintain their integrity and adapt to the mechanical requirements set by their environment.
Intermediate Filament Mechanics Across Scales – From Single Filaments to Single Interactions and Networks in Cells
Author: Anna Veronika Schepers
Publisher: Universitätsverlag Göttingen
ISBN: 3863955676
Category :
Languages : en
Pages : 247
Book Description
The mechanical properties of cells are largely determined by the cytoskeleton. The cytoskeleton is an intricate and complex structure formed by protein filaments, motor proteins, and crosslinkers. The three main types of protein filaments are microtubules, actin filaments, and intermediate filaments ( IFs ). Whereas the proteins that form microtubules and actin filaments are exceptionally conserved throughout cell types and organisms, the family of IFs is diverse. For example, the IF protein vimentin is expressed in relatively motile fibroblasts, and keratin IFs are found in epithelial cells. This variety of IF proteins might therefore be linked to the various mechanical properties of different cell types. In the scope of this thesis, I combine studies of IF mechanics on different time scales and in systems of increasing complexity, from single filaments to networks in cells. This multiscale approach allows for the simplification necessary to interpret observations while adding increasing physiological context in subsequent experiments. We especially focus on the tunability of the IF mechanics by environmental cues in these increasingly complex systems. In a series of experiments, including single filament elongation studies, single filament stretching measurements with optical tweezers, filament-filament interaction measurements with four optical tweezers, microrheology, and isotropic cell stretching, we characterize how electrostatic (pH and ion concentration) and hydrophobic interactions (detergent) provide various mechanisms by which the mechanics of the IF cytoskeleton can be tuned. These studies reveal how small changes, such as charge shifts, influence IF mechanics on multiple scales. In combination with simulations, we determine the mechanisms by which charge shifts alter single vimentin filament mechanics and we extract energy landscapes for interactions between single filaments. Such insights will provide a deeper understanding of the mechanisms by which cells can maintain their integrity and adapt to the mechanical requirements set by their environment.
Publisher: Universitätsverlag Göttingen
ISBN: 3863955676
Category :
Languages : en
Pages : 247
Book Description
The mechanical properties of cells are largely determined by the cytoskeleton. The cytoskeleton is an intricate and complex structure formed by protein filaments, motor proteins, and crosslinkers. The three main types of protein filaments are microtubules, actin filaments, and intermediate filaments ( IFs ). Whereas the proteins that form microtubules and actin filaments are exceptionally conserved throughout cell types and organisms, the family of IFs is diverse. For example, the IF protein vimentin is expressed in relatively motile fibroblasts, and keratin IFs are found in epithelial cells. This variety of IF proteins might therefore be linked to the various mechanical properties of different cell types. In the scope of this thesis, I combine studies of IF mechanics on different time scales and in systems of increasing complexity, from single filaments to networks in cells. This multiscale approach allows for the simplification necessary to interpret observations while adding increasing physiological context in subsequent experiments. We especially focus on the tunability of the IF mechanics by environmental cues in these increasingly complex systems. In a series of experiments, including single filament elongation studies, single filament stretching measurements with optical tweezers, filament-filament interaction measurements with four optical tweezers, microrheology, and isotropic cell stretching, we characterize how electrostatic (pH and ion concentration) and hydrophobic interactions (detergent) provide various mechanisms by which the mechanics of the IF cytoskeleton can be tuned. These studies reveal how small changes, such as charge shifts, influence IF mechanics on multiple scales. In combination with simulations, we determine the mechanisms by which charge shifts alter single vimentin filament mechanics and we extract energy landscapes for interactions between single filaments. Such insights will provide a deeper understanding of the mechanisms by which cells can maintain their integrity and adapt to the mechanical requirements set by their environment.
Intermediate Filament Proteins
Author:
Publisher: Academic Press
ISBN: 9780128034705
Category : Science
Languages : en
Pages : 0
Book Description
Intermediate Filament Proteins, the latest volume in the Methods in Enzymology series covers all the intermediate filaments in vertebrates and invertebrates, providing a unique understanding of the multiple different tissue-specific intermediate filaments. This volume also covers the latest methods that are currently being used to study intermediate filament protein function and dynamics. It will be an important companion for any experimentalist interesting in studying this protein family in their cell or organism model system.
Publisher: Academic Press
ISBN: 9780128034705
Category : Science
Languages : en
Pages : 0
Book Description
Intermediate Filament Proteins, the latest volume in the Methods in Enzymology series covers all the intermediate filaments in vertebrates and invertebrates, providing a unique understanding of the multiple different tissue-specific intermediate filaments. This volume also covers the latest methods that are currently being used to study intermediate filament protein function and dynamics. It will be an important companion for any experimentalist interesting in studying this protein family in their cell or organism model system.
The Cytoskeleton
Author: James Spudich
Publisher:
ISBN: 9780824331733
Category : Actin
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780824331733
Category : Actin
Languages : en
Pages : 0
Book Description
Molecular Biology of the Cell
Introductory Biomechanics
Author: C. Ross Ethier
Publisher: Cambridge University Press
ISBN: 1139461826
Category : Technology & Engineering
Languages : en
Pages : 10
Book Description
Introductory Biomechanics is a new, integrated text written specifically for engineering students. It provides a broad overview of this important branch of the rapidly growing field of bioengineering. A wide selection of topics is presented, ranging from the mechanics of single cells to the dynamics of human movement. No prior biological knowledge is assumed and in each chapter, the relevant anatomy and physiology are first described. The biological system is then analyzed from a mechanical viewpoint by reducing it to its essential elements, using the laws of mechanics and then tying mechanical insights back to biological function. This integrated approach provides students with a deeper understanding of both the mechanics and the biology than from qualitative study alone. The text is supported by a wealth of illustrations, tables and examples, a large selection of suitable problems and hundreds of current references, making it an essential textbook for any biomechanics course.
Publisher: Cambridge University Press
ISBN: 1139461826
Category : Technology & Engineering
Languages : en
Pages : 10
Book Description
Introductory Biomechanics is a new, integrated text written specifically for engineering students. It provides a broad overview of this important branch of the rapidly growing field of bioengineering. A wide selection of topics is presented, ranging from the mechanics of single cells to the dynamics of human movement. No prior biological knowledge is assumed and in each chapter, the relevant anatomy and physiology are first described. The biological system is then analyzed from a mechanical viewpoint by reducing it to its essential elements, using the laws of mechanics and then tying mechanical insights back to biological function. This integrated approach provides students with a deeper understanding of both the mechanics and the biology than from qualitative study alone. The text is supported by a wealth of illustrations, tables and examples, a large selection of suitable problems and hundreds of current references, making it an essential textbook for any biomechanics course.
Intermediate Filament Cytoskeleton
Author: M. Bishr Omary
Publisher: Gulf Professional Publishing
ISBN: 9780125641739
Category : Medical
Languages : fa
Pages : 966
Book Description
Intermediate filaments are a large family of proteins that are the cytoskeletal elements involved in a number of skin, liver, neuromuscular, cardiac, eye and hair diseases. Intermediate filament genes are regulated in a tissue-and cell type-specific manner and their polymerized protein products protects the cells and tissue they are part of against a variety of mechanical and nonmechanical stresses. This book provides a comprehensive resource of methodology essentials, describing a variety of essential tools and assays for studying intermediate filaments. The book provides user-friendly advice and protocols covering all aspects of intermediate filaments including protein isolation and structure, protein and gene regulation, relationship to disease and apoptosis, and associated proteins. Both mammalian and non-mammalian systems and animal models are covered, making this book a must-have for any investigator wishing to study IF genes or their protein products. * Covers intermediate filaments from crystallography, protein chemistry, cell and molecular biology, microrheology, gene regulation, to animal models and human disease * Practical and user-friendly with detailed "how-to-protocols and "tricks of the trade" * Includes detailed tables of useful reagents, vendors and web links
Publisher: Gulf Professional Publishing
ISBN: 9780125641739
Category : Medical
Languages : fa
Pages : 966
Book Description
Intermediate filaments are a large family of proteins that are the cytoskeletal elements involved in a number of skin, liver, neuromuscular, cardiac, eye and hair diseases. Intermediate filament genes are regulated in a tissue-and cell type-specific manner and their polymerized protein products protects the cells and tissue they are part of against a variety of mechanical and nonmechanical stresses. This book provides a comprehensive resource of methodology essentials, describing a variety of essential tools and assays for studying intermediate filaments. The book provides user-friendly advice and protocols covering all aspects of intermediate filaments including protein isolation and structure, protein and gene regulation, relationship to disease and apoptosis, and associated proteins. Both mammalian and non-mammalian systems and animal models are covered, making this book a must-have for any investigator wishing to study IF genes or their protein products. * Covers intermediate filaments from crystallography, protein chemistry, cell and molecular biology, microrheology, gene regulation, to animal models and human disease * Practical and user-friendly with detailed "how-to-protocols and "tricks of the trade" * Includes detailed tables of useful reagents, vendors and web links
Intermediate Filament Structure
Author: David A. D. Parry
Publisher: R G Landes Company
ISBN: 9781570591204
Category : Science
Languages : en
Pages : 183
Book Description
Covers the structure and role of intermediate filament (IF) proteins in a variety of cell types. The text examines the expression of IF proteins, the hierarchical assembly of those proteins into molecules, oligomers, protofilaments, protofilbrils and intact IF.
Publisher: R G Landes Company
ISBN: 9781570591204
Category : Science
Languages : en
Pages : 183
Book Description
Covers the structure and role of intermediate filament (IF) proteins in a variety of cell types. The text examines the expression of IF proteins, the hierarchical assembly of those proteins into molecules, oligomers, protofilaments, protofilbrils and intact IF.
Intermediate filaments structure, function and clinical significance
Author: Yaming Jiu
Publisher: Frontiers Media SA
ISBN: 2832510469
Category : Science
Languages : en
Pages : 176
Book Description
Publisher: Frontiers Media SA
ISBN: 2832510469
Category : Science
Languages : en
Pages : 176
Book Description
Parasitology and Microbiology Research
Author: Gilberto Antonio Bastidas Pacheco
Publisher: BoD – Books on Demand
ISBN: 1789859018
Category : Medical
Languages : en
Pages : 376
Book Description
The study of both unicellular and multicellular living beings and the diseases they produce from a biological point of view requires constant review of their relationship with their host and environment, given their indisputable sanitary importance. In this sense, in parasitology and microbiology, updated and concise information on life cycle, taxonomic classification, clinical manifestations, diagnosis, treatment, epidemiological behavior, and control measures is of vital importance. This is what we pursue with this book. The approach to parasitology and microbiology and the research that is carried out on it is unquestionable because the associations between life forms have been present from the very beginning of life.Research in parasitology and microbiology is necessary and indispensable for controlling diseases that affect much of the world with serious economic and social consequences. The challenge is to promote research to keep these diseases at bay. This book shows what has been done up to now and what can be done in the future to combat infectious diseases.
Publisher: BoD – Books on Demand
ISBN: 1789859018
Category : Medical
Languages : en
Pages : 376
Book Description
The study of both unicellular and multicellular living beings and the diseases they produce from a biological point of view requires constant review of their relationship with their host and environment, given their indisputable sanitary importance. In this sense, in parasitology and microbiology, updated and concise information on life cycle, taxonomic classification, clinical manifestations, diagnosis, treatment, epidemiological behavior, and control measures is of vital importance. This is what we pursue with this book. The approach to parasitology and microbiology and the research that is carried out on it is unquestionable because the associations between life forms have been present from the very beginning of life.Research in parasitology and microbiology is necessary and indispensable for controlling diseases that affect much of the world with serious economic and social consequences. The challenge is to promote research to keep these diseases at bay. This book shows what has been done up to now and what can be done in the future to combat infectious diseases.
Physical Biology of the Cell
Author: Rob Phillips
Publisher: Garland Science
ISBN: 1134111584
Category : Science
Languages : en
Pages : 1089
Book Description
Physical Biology of the Cell is a textbook for a first course in physical biology or biophysics for undergraduate or graduate students. It maps the huge and complex landscape of cell and molecular biology from the distinct perspective of physical biology. As a key organizing principle, the proximity of topics is based on the physical concepts that
Publisher: Garland Science
ISBN: 1134111584
Category : Science
Languages : en
Pages : 1089
Book Description
Physical Biology of the Cell is a textbook for a first course in physical biology or biophysics for undergraduate or graduate students. It maps the huge and complex landscape of cell and molecular biology from the distinct perspective of physical biology. As a key organizing principle, the proximity of topics is based on the physical concepts that