Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities PDF full book. Access full book title Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities by . Download full books in PDF and EPUB format.

Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

Enabling High Efficiency Ethanol Engines

Enabling High Efficiency Ethanol Engines PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

Alcohol as an Alternative Fuel for Internal Combustion Engines

Alcohol as an Alternative Fuel for Internal Combustion Engines PDF Author: Pravesh Chandra Shukla
Publisher: Springer Nature
ISBN: 9811609314
Category : Technology & Engineering
Languages : en
Pages : 273

Book Description
div="" This book covers different aspects related to utilization of alcohol fuels in internal combustion (IC) engines with a focus on combustion, performance and emission investigations. The focal point of this book is to present engine combustion, performance and emission characteristics of IC engines fueled by alcohol blended fuels such as methanol, ethanol and butanol. The contents also highlight the importance of alcohol fuel for reducing emission levels. Possibility of alcohol fuels for marine applications has also been discussed. This book is a useful guide for researchers, academics and scientists. ^

IntermediateLevel Blends of Ethanol in Gasoline, and the Ethanol “Blend Wall”

IntermediateLevel Blends of Ethanol in Gasoline, and the Ethanol “Blend Wall” PDF Author: Brent D. Yacobucci
Publisher: DIANE Publishing
ISBN: 1437942172
Category :
Languages : en
Pages : 15

Book Description
This report discusses the growing interest in the potential for ethanol to displace petroleum as a transportation fuel, as well as related issues, including current Clean Air Act (CAA) limitation on ethanol content in gasoline; the requests of ethanol producers for an increase of this limitation; and the effects the limitation has upon vehicle and engine warranties and the infrastructures of the automobile and fuel industries.

Alcohol Fuels

Alcohol Fuels PDF Author: United States. Congress. House. Committee on Science and Technology. Subcommittee on Advanced Energy Technologies and Energy Conservation Research, Development, and Demonstration
Publisher:
ISBN:
Category : Alcohol as fuel
Languages : en
Pages : 726

Book Description


International Symposium on Alcohol Fuels

International Symposium on Alcohol Fuels PDF Author: Institut français du pétrole
Publisher: Editions TECHNIP
ISBN: 2710805170
Category : Alcohol as fuel
Languages : en
Pages : 678

Book Description


Incorporation of Higher Carbon Number Alcohols in Gasoline Blends for Application in Spark-Ignition Engines

Incorporation of Higher Carbon Number Alcohols in Gasoline Blends for Application in Spark-Ignition Engines PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract : The 2007 U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Higher carbon number alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Alcohols of carbon numbers 2 through 8 are chosen based on their chemical and engine-related properties. Blend comparison metrics are developed from automotive industry trends, consumer expectations, U.S. fuel legislation, and engine requirements. The metrics are then used to create scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. Each scenario details an overall objective and identifies chemical and engine-related properties that are crucial to meeting that objective as fuel criteria. Fuel blend property prediction methods are adopted from literature and used to calculate both linear and non-linear properties of multi-component blends. Possible combinations of eight alcohols mixed with a gasoline blendstock are calculated and the properties of the theoretical fuel blends are predicted. Blends that meet all of a scenario's criteria are identified as suitable blends. Blends of higher carbon number alcohols with gasoline blendstock are identified as optimal blends for each scenario if they meet all of the scenario's criteria and maximize either energy content, knock resistance, or petroleum displacement. Optimal blends are tested in a spark-ignition engine. The effect of higher carbon number alcohols as a fuel component on engine performance and emissions is examined. Results suggest that combustion properties of blends of alcohols with carbon numbers from two to six are similar to those of the reference fuel at low and medium engine loads. Properties of blends of alcohols with carbon numbers from two to four are similar to those of the reference fuel even at high loads. However, due to their reduced knock resistance, the suitability of longer chain alcohols, specifically C5 and longer, as blending agents at increased levels is questionable.

The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.

The Technical Literature of Agricultural Motor Fuels

The Technical Literature of Agricultural Motor Fuels PDF Author: Richard Wiebe
Publisher:
ISBN:
Category : Agricultural machinery
Languages : en
Pages : 282

Book Description


Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309159474
Category : Science
Languages : en
Pages : 251

Book Description
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.