Bioelectrochemical Interface Engineering PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Bioelectrochemical Interface Engineering PDF full book. Access full book title Bioelectrochemical Interface Engineering by R. Navanietha Krishnaraj. Download full books in PDF and EPUB format.

Bioelectrochemical Interface Engineering

Bioelectrochemical Interface Engineering PDF Author: R. Navanietha Krishnaraj
Publisher: John Wiley & Sons
ISBN: 1119538564
Category : Science
Languages : en
Pages : 560

Book Description
An introduction to the fundamental concepts and rules in bioelectrochemistry and explores latest advancements in the field Bioelectrochemical Interface Engineering offers a guide to this burgeoning interdisciplinary field. The authors—noted experts on the topic—present a detailed explanation of the field’s basic concepts, provide a fundamental understanding of the principle of electrocatalysis, electrochemical activity of the electroactive microorganisms, and mechanisms of electron transfer at electrode-electrolyte interfaces. They also explore the design and development of bioelectrochemical systems. The authors review recent advances in the field including: the development of new bioelectrochemical configurations, new electrode materials, electrode functionalization strategies, and extremophilic electroactive microorganisms. These current developments hold the promise of powering the systems in remote locations such as deep sea and extra-terrestrial space as well as powering implantable energy devices and controlled drug delivery. This important book: • Explores the fundamental concepts and rules in bioelectrochemistry and details the latest advancements • Presents principles of electrocatalysis, electroactive microorganisms, types and mechanisms of electron transfer at electrode-electrolyte interfaces, electron transfer kinetics in bioelectrocatalysis, and more • Covers microbial electrochemical systems and discusses bioelectrosynthesis and biosensors, and bioelectrochemical wastewater treatment • Reviews microbial biosensor, microfluidic and lab-on-chip devices, flexible electronics, and paper and stretchable electrodes Written for researchers, technicians, and students in chemistry, biology, energy and environmental science, Bioelectrochemical Interface Engineering provides a strong foundation to this advanced field by presenting the core concepts, basic principles, and newest advances.

Bioelectrochemical Interface Engineering

Bioelectrochemical Interface Engineering PDF Author: R. Navanietha Krishnaraj
Publisher: John Wiley & Sons
ISBN: 1119538564
Category : Science
Languages : en
Pages : 560

Book Description
An introduction to the fundamental concepts and rules in bioelectrochemistry and explores latest advancements in the field Bioelectrochemical Interface Engineering offers a guide to this burgeoning interdisciplinary field. The authors—noted experts on the topic—present a detailed explanation of the field’s basic concepts, provide a fundamental understanding of the principle of electrocatalysis, electrochemical activity of the electroactive microorganisms, and mechanisms of electron transfer at electrode-electrolyte interfaces. They also explore the design and development of bioelectrochemical systems. The authors review recent advances in the field including: the development of new bioelectrochemical configurations, new electrode materials, electrode functionalization strategies, and extremophilic electroactive microorganisms. These current developments hold the promise of powering the systems in remote locations such as deep sea and extra-terrestrial space as well as powering implantable energy devices and controlled drug delivery. This important book: • Explores the fundamental concepts and rules in bioelectrochemistry and details the latest advancements • Presents principles of electrocatalysis, electroactive microorganisms, types and mechanisms of electron transfer at electrode-electrolyte interfaces, electron transfer kinetics in bioelectrocatalysis, and more • Covers microbial electrochemical systems and discusses bioelectrosynthesis and biosensors, and bioelectrochemical wastewater treatment • Reviews microbial biosensor, microfluidic and lab-on-chip devices, flexible electronics, and paper and stretchable electrodes Written for researchers, technicians, and students in chemistry, biology, energy and environmental science, Bioelectrochemical Interface Engineering provides a strong foundation to this advanced field by presenting the core concepts, basic principles, and newest advances.

Dye-sensitized Solar Cells

Dye-sensitized Solar Cells PDF Author: Songyuan Dai
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311038373X
Category : Technology & Engineering
Languages : en
Pages : 706

Book Description
The operation of everything in the universe needs a special „material“-energy. The earth is no exception. There are many kinds of energy sources on earth. But where does the earth‘s energy come from? The answer is that everything grows under the sun. Developing renewable energy is of strategic importance to achieve sustainable energy supply. Simulating natural photosynthesis is the ultimate goal of effi cient solar energy conversion. Photovoltaic technology has been widely used in industry and will be one of the major energy sources in the future. Developing new materials and structures, the photoelectric conversion effi ciency of solar cells will be improved day by day, and solar cells will attract more and more attention. This book presents principles of solar photovoltaic conversion, and introduces the physical and chemical processes involved. Mechanisms which affect solar cell performance are also discussed.

Pore Filling and Light Trapping in Solid-state Dye-sensitized Solar Cells

Pore Filling and Light Trapping in Solid-state Dye-sensitized Solar Cells PDF Author: I-Kang Ding
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 126

Book Description
Dye-sensitized solar cells (DSCs) are among the promising photovoltaic technologies that could potentially replace the expensive silicon. Liquid electrolyte-based DSCs have the highest efficiency but they suffer from potential stability and encapsulation problems when manufactured at high volumes. Research groups are actively pursuing solid state dye-sensitized solar cells (ss-DSCs), which uses a solid-state hole-transport material to replace the liquid electrolyte. SS-DSCs can potentially achieve higher power conversion efficiencies than the liquid-electrolyte because the open-circuit voltage can be adjusted by the choice of different hole-transport materials. However, current ss-DSCs are limited by both pore filling and electron-hole recombination such that the optimal thickness is around 2 microns, far thinner than the thickness needed to achieve good optical absorption. This thesis presents results that address two challenges facing the field of ss-DSC research - what is limiting the thickness of the device, and what can we do to boost light absorption and power conversion efficiency? In the first part, we describe how pore filling of hole-transport materials inside mesoporous TiO2 films is a limiting factor to the device thickness. This is accomplished by three closely-related pore filling projects: (a) quantifying the pore filling of hole-transport materials inside mesoporous TiO2 films; (b) experimenting with new methods to improve pore filling fraction; and (c) investigating the effect of pore filling on photovoltaic performances of ss-DSCs and the underlying photophysical mechanisms. This brings new physical understanding of the importance of pore filling and how pore filling a effects the photovoltaic performances. In the second part, we describe a new device architecture to increase the absorption through the use of plasmonic back reectors, which consist of two-dimensional (2D) array of silver nanodomes. They are incorporated into the ss-DSCs by nanoimprint lithography, and they enhance absorption through excitation of plasmonic modes and increased light scattering.

Organic Solar Cells

Organic Solar Cells PDF Author: Pankaj Kumar
Publisher: CRC Press
ISBN: 1315353628
Category : Science
Languages : en
Pages : 452

Book Description
This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.

Photosensitizers in Medicine, Environment, and Security

Photosensitizers in Medicine, Environment, and Security PDF Author: Tebello Nyokong
Publisher: Springer Science & Business Media
ISBN: 9048138701
Category : Science
Languages : en
Pages : 672

Book Description
This book addresses the synthesis of photosensitizers, the main emphasis being on the new methods of synthesis such as microwave, sonochemistry and the use of ionic liquids. It also addresses the photochemistry and photophysics of the photosensitizers alone and in combination with nanoparticles, the use of the photosensitizers in environmental control, safety and medicine. It discusses the common structures of the photosensitizers which are beneficial to these applications.

Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells

Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells PDF Author: Alagarsamy Pandikumar
Publisher: John Wiley & Sons
ISBN: 1119557380
Category : Science
Languages : en
Pages : 290

Book Description
Offers an Interdisciplinary approach to the engineering of functional materials for efficient solar cell technology Written by a collection of experts in the field of solar cell technology, this book focuses on the engineering of a variety of functional materials for improving photoanode efficiency of dye-sensitized solar cells (DSSC). The first two chapters describe operation principles of DSSC, charge transfer dynamics, as well as challenges and solutions for improving DSSCs. The remaining chapters focus on interfacial engineering of functional materials at the photoanode surface to create greater output efficiency. Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells begins by introducing readers to the history, configuration, components, and working principles of DSSC It then goes on to cover both nanoarchitectures and light scattering materials as photoanode. Function of compact (blocking) layer in the photoanode and of TiCl4 post-treatment in the photoanode are examined at next. Next two chapters look at photoanode function of doped semiconductors and binary semiconductor metal oxides. Other chapters consider nanocomposites, namely, plasmonic nanocomposites, carbon nanotube based nanocomposites, graphene based nanocomposites, and graphite carbon nitride based nanocompositesas photoanodes. The book: Provides comprehensive coverage of the fundamentals through the applications of DSSC Encompasses topics on various functional materials for DSSC technology Focuses on the novel design and application of materials in DSSC, to develop more efficient renewable energy sources Is useful for material scientists, engineers, physicists, and chemists interested in functional materials for the design of efficient solar cells Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells will be of great benefit to graduate students, researchers and engineers, who work in the multi-disciplinary areas of material science, engineering, physics, and chemistry.

The Physics of Solar Cells

The Physics of Solar Cells PDF Author: Juan Bisquert
Publisher: CRC Press
ISBN: 1351395580
Category : Science
Languages : en
Pages : 239

Book Description
The book provides an explanation of the operation of photovoltaic devices from a broad perspective that embraces a variety of materials concepts, from nanostructured and highly disordered organic materials, to highly efficient devices such as the lead halide perovskite solar cells. The book establishes from the beginning a simple but very rich model of a solar cell, in order to develop and understand step by step the photovoltaic operation according to fundamental physical properties and constraints. It emphasizes the aspects pertaining to the functioning of a solar cell and the determination of limiting efficiencies of energy conversion. The final chapters of the book establish a more refined and realistic treatment of the many factors that determine the actual performance of experimental devices: transport gradients, interfacial recombination, optical losses and so forth. The book finishes with a short review of additional important aspects of solar energy conversion, such as the photonic aspects of spectral modification, and the direct conversion of solar photons to chemical fuel via electrochemical reactions.

Fiber Electronics

Fiber Electronics PDF Author: Huisheng Peng
Publisher: Springer Nature
ISBN: 9811599459
Category : Science
Languages : en
Pages : 466

Book Description
This book highlights the main advances in fiber electronics, like fiber-shaped solar cells, batteries, supercapacitors, sensors, light-emitting devices, memristors and communication devices from the standpoints of material synthesis, structure design and property enhancement. It focuses on revealing the separation and transport mechanisms of charges, establishing transport equations for electrons and ions, and emphasizing integration methods in fiber devices. In closing, it reviews emerging applications based on fiber devices that could accelerate their large-scale production in the near future. Given its scope, the book offers a valuable resource for scientists, engineers, graduate students and undergraduate students in a wide variety of fields such as advanced materials, energy, electrochemistry, applied physics, nanoscience and nanotechnology, polymer science and engineering and biomedical science. It also benefits many non-specialist industrialists who are working to promote new technologies.

ZnO Nanostructures

ZnO Nanostructures PDF Author: Yue Zhang
Publisher: Royal Society of Chemistry
ISBN: 1788011732
Category : Science
Languages : en
Pages : 253

Book Description
As wide band semiconductors with rich morphologies and interesting electric, optical, mechanical and piezoelectric properties, ZnO nanostructures have great potential in applications, such as strain sensors, UV detectors, blue LED, nano generators, and biosensors. ZnO Nanostructures: Fabrication and Applications covers the controllable synthesis and property optimization of ZnO nanostructures through to the preparation and performance of nanodevices for various applications. The book also includes recent progress in property modulation of ZnO nanomaterials and new types of devices as well as the latest research on self-powered devices and performance modulation of ZnO nanodevices by multi-field coupled effects. Authored by a leading researcher working within the field, this volume is applicable for those working in nanostructure fabrication and device application in industry and academia and is appropriate from advanced undergraduate level upwards.

Proceedings of the 7th International Conference on Electrical, Control and Computer Engineering—Volume 2

Proceedings of the 7th International Conference on Electrical, Control and Computer Engineering—Volume 2 PDF Author: Zainah Md. Zain
Publisher: Springer Nature
ISBN: 9819738512
Category :
Languages : en
Pages : 637

Book Description