Interconnects in VLSI Design PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Interconnects in VLSI Design PDF full book. Access full book title Interconnects in VLSI Design by Hartmut Grabinski. Download full books in PDF and EPUB format.

Interconnects in VLSI Design

Interconnects in VLSI Design PDF Author: Hartmut Grabinski
Publisher: Springer Science & Business Media
ISBN: 1461543495
Category : Technology & Engineering
Languages : en
Pages : 234

Book Description
This book presents an updated selection of the most representative contributions to the 2nd and 3rd IEEE Workshops on Signal Propagation on Interconnects (SPI) which were held in Travemtinde (Baltic See Side), Germany, May 13-15, 1998, and in Titisee-Neustadt (Black Forest), Germany, May 19-21, 1999. This publication addresses the need of developers and researchers in the field of VLSI chip and package design. It offers a survey of current problems regarding the influence of interconnect effects on the electrical performance of electronic circuits and suggests innovative solutions. In this sense the present book represents a continua tion and a supplement to the first book "Signal Propagation on Interconnects", Kluwer Academic Publishers, 1998. The papers in this book cover a wide area of research directions: Beneath the des cription of general trends they deal with the solution of signal integrity problems, the modeling of interconnects, parameter extraction using calculations and measurements and last but not least actual problems in the field of optical interconnects.

Interconnects in VLSI Design

Interconnects in VLSI Design PDF Author: Hartmut Grabinski
Publisher: Springer Science & Business Media
ISBN: 1461543495
Category : Technology & Engineering
Languages : en
Pages : 234

Book Description
This book presents an updated selection of the most representative contributions to the 2nd and 3rd IEEE Workshops on Signal Propagation on Interconnects (SPI) which were held in Travemtinde (Baltic See Side), Germany, May 13-15, 1998, and in Titisee-Neustadt (Black Forest), Germany, May 19-21, 1999. This publication addresses the need of developers and researchers in the field of VLSI chip and package design. It offers a survey of current problems regarding the influence of interconnect effects on the electrical performance of electronic circuits and suggests innovative solutions. In this sense the present book represents a continua tion and a supplement to the first book "Signal Propagation on Interconnects", Kluwer Academic Publishers, 1998. The papers in this book cover a wide area of research directions: Beneath the des cription of general trends they deal with the solution of signal integrity problems, the modeling of interconnects, parameter extraction using calculations and measurements and last but not least actual problems in the field of optical interconnects.

High-Speed VLSI Interconnections

High-Speed VLSI Interconnections PDF Author: Ashok K. Goel
Publisher: John Wiley & Sons
ISBN: 0470165960
Category : Technology & Engineering
Languages : en
Pages : 433

Book Description
This Second Edition focuses on emerging topics and advances in the field of VLSI interconnections In the decade since High-Speed VLSI Interconnections was first published, several major developments have taken place in the field. Now, updated to reflect these advancements, this Second Edition includes new information on copper interconnections, nanotechnology circuit interconnects, electromigration in the copper interconnections, parasitic inductances, and RLC models for comprehensive analysis of interconnection delays and crosstalk. Each chapter is designed to exist independently or as a part of one coherent unit, and several appropriate exercises are provided at the end of each chapter, challenging the reader to gain further insight into the contents being discussed. Chapter subjects include: * Preliminary Concepts * Parasitic Resistances, Capacitances, and Inductances * Interconnection Delays * Crosstalk Analysis * Electromigration-Induced Failure Analysis * Future Interconnections High-Speed VLSI Interconnections, Second Edition is an indispensable reference for high-speed VLSI designers, RF circuit designers, and advanced students of electrical engineering.

Graphene and VLSI Interconnects

Graphene and VLSI Interconnects PDF Author: Cher-Ming Tan
Publisher: CRC Press
ISBN: 1000470687
Category : Science
Languages : en
Pages : 121

Book Description
Copper (Cu) has been used as an interconnection material in the semiconductor industry for years owing to its best balance of conductivity and performance. However, it is running out of steam as it is approaching its limits with respect to electrical performance and reliability. Graphene is a non-metal material, but it can help to improve electromigration (EM) performance of Cu because of its excellent properties. Combining graphene with Cu for very large-scale integration (VLSI) interconnects can be a viable solution. The incorporation of graphene into Cu allows the present Cu fabrication back-end process to remain unaltered, except for the small step of “inserting” graphene into Cu. Therefore, it has a great potential to revolutionize the VLSI integrated circuit (VLSI-IC) industry and appeal for further advancement of the semiconductor industry. This book is a compilation of comprehensive studies done on the properties of graphene and its synthesis methods suitable for applications of VLSI interconnects. It introduces the development of a new method to synthesize graphene, wherein it not only discusses the method to grow graphene over Cu but also allows the reader to know how to optimize graphene growth, using statistical design of experiments (DoE), on Cu interconnects in order to obtain good-quality and reliable interconnects. It provides a basic understanding of graphene–Cu interaction mechanism and evaluates the electrical and EM performance of graphenated Cu interconnects.

On Optimal Interconnections for VLSI

On Optimal Interconnections for VLSI PDF Author: Andrew B. Kahng
Publisher: Springer Science & Business Media
ISBN: 9780792394839
Category : Technology & Engineering
Languages : en
Pages : 312

Book Description
On Optimal Interconnections for VLSI describes, from a geometric perspective, algorithms for high-performance, high-density interconnections during the global and detailed routing phases of circuit layout. First, the book addresses area minimization, with a focus on near-optimal approximation algorithms for minimum-cost Steiner routing. In addition to practical implementations of recent methods, the implications of recent results on spanning tree degree bounds and the method of Zelikovsky are discussed. Second, the book addresses delay minimization, starting with a discussion of accurate, yet algorithmically tractable, delay models. Recent minimum-delay constructions are highlighted, including provably good cost-radius tradeoffs, critical-sink routing algorithms, Elmore delay-optimal routing, graph Steiner arborescences, non-tree routing, and wiresizing. Third, the book addresses skew minimization for clock routing and prescribed-delay routing formulations. The discussion starts with early matching-based constructions and goes on to treat zero-skew routing with provably minimum wirelength, as well as planar clock routing. Finally, the book concludes with a discussion of multiple (competing) objectives, i.e., how to optimize area, delay, skew, and other objectives simultaneously. These techniques are useful when the routing instance has heterogeneous resources or is highly congested, as in FPGA routing, multi-chip packaging, and very dense layouts. Throughout the book, the emphasis is on practical algorithms and a complete self-contained development. On Optimal Interconnections for VLSI will be of use to both circuit designers (CAD tool users) as well as researchers and developers in the area of performance-driven physical design.

Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET)

Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET) PDF Author: Raj, Balwinder
Publisher: IGI Global
ISBN: 1799813959
Category : Technology & Engineering
Languages : en
Pages : 255

Book Description
With recent advancements in electronics, specifically nanoscale devices, new technologies are being implemented to improve the properties of automated systems. However, conventional materials are failing due to limited mobility, high leakage currents, and power dissipation. To mitigate these challenges, alternative resources are required to advance electronics further into the nanoscale domain. Carbon nanotube field-effect transistors are a potential solution yet lack the information and research to be properly utilized. Major Applications of Carbon Nanotube Field-Effect Transistors (CNTFET) is a collection of innovative research on the methods and applications of converting semiconductor devices from micron technology to nanotechnology. The book provides readers with an updated status on existing CNTs, CNTFETs, and their applications and examines practical applications to minimize short channel effects and power dissipation in nanoscale devices and circuits. While highlighting topics including interconnects, digital circuits, and single-wall CNTs, this book is ideally designed for electrical engineers, electronics engineers, students, researchers, academicians, industry professionals, and practitioners working in nanoscience, nanotechnology, applied physics, and electrical and electronics engineering.

Nano Interconnects

Nano Interconnects PDF Author: Afreen Khursheed
Publisher: CRC Press
ISBN: 1000504298
Category : Technology & Engineering
Languages : en
Pages : 239

Book Description
This textbook comprehensively covers on-chip interconnect dimension and application of carbon nanomaterials for modeling VLSI interconnect and buffer circuits. It provides analysis of ultra-low power high speed nano-interconnects based on different facets such as material modeling, circuit modeling and the adoption of repeater insertion strategies and measurement techniques. It covers important topics including on-chip interconnects, interconnect modeling, electrical impedance modeling of on-chip interconnects, modeling of repeater buffer and variability analysis. Pedagogical features including solved problems and unsolved exercises are interspersed throughout the text for better understanding. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics and communications engineering for courses on Advanced VLSI Interconnects/Advanced VLSI Design/VLSI Interconnects/VLSI Design Automation and Techniques, this book: Provides comprehensive coverage of fundamental concepts related to nanotube transistors and interconnects. Discusses properties and performance of practical nanotube devices and related applications. Covers physical and electrical phenomena of carbon nanotubes, as well as applications enabled by this nanotechnology. Discusses the structure, properties, and characteristics of graphene-based on-chip interconnect. Examines interconnect power and interconnect delay issues arising due to downscaling of device size.

Circuits, Interconnections, and Packaging for VLSI

Circuits, Interconnections, and Packaging for VLSI PDF Author: H. B. Bakoglu
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 552

Book Description


On Optimal Interconnections for VLSI

On Optimal Interconnections for VLSI PDF Author: Andrew B. Kahng
Publisher: Springer Science & Business Media
ISBN: 1475723636
Category : Technology & Engineering
Languages : en
Pages : 301

Book Description
On Optimal Interconnections for VLSI describes, from a geometric perspective, algorithms for high-performance, high-density interconnections during the global and detailed routing phases of circuit layout. First, the book addresses area minimization, with a focus on near-optimal approximation algorithms for minimum-cost Steiner routing. In addition to practical implementations of recent methods, the implications of recent results on spanning tree degree bounds and the method of Zelikovsky are discussed. Second, the book addresses delay minimization, starting with a discussion of accurate, yet algorithmically tractable, delay models. Recent minimum-delay constructions are highlighted, including provably good cost-radius tradeoffs, critical-sink routing algorithms, Elmore delay-optimal routing, graph Steiner arborescences, non-tree routing, and wiresizing. Third, the book addresses skew minimization for clock routing and prescribed-delay routing formulations. The discussion starts with early matching-based constructions and goes on to treat zero-skew routing with provably minimum wirelength, as well as planar clock routing. Finally, the book concludes with a discussion of multiple (competing) objectives, i.e., how to optimize area, delay, skew, and other objectives simultaneously. These techniques are useful when the routing instance has heterogeneous resources or is highly congested, as in FPGA routing, multi-chip packaging, and very dense layouts. Throughout the book, the emphasis is on practical algorithms and a complete self-contained development. On Optimal Interconnections for VLSI will be of use to both circuit designers (CAD tool users) as well as researchers and developers in the area of performance-driven physical design.

Interconnect-Centric Design for Advanced SOC and NOC

Interconnect-Centric Design for Advanced SOC and NOC PDF Author: Jari Nurmi
Publisher: Springer Science & Business Media
ISBN: 9781402078354
Category : Computers
Languages : en
Pages : 474

Book Description
In Interconnect-centric Design for Advanced SoC and NoC, we have tried to create a comprehensive understanding about on-chip interconnect characteristics, design methodologies, layered views on different abstraction levels and finally about applying the interconnect-centric design in system-on-chip design. Traditionally, on-chip communication design has been done using rather ad-hoc and informal approaches that fail to meet some of the challenges posed by next-generation SOC designs, such as performance and throughput, power and energy, reliability, predictability, synchronization, and management of concurrency. To address these challenges, it is critical to take a global view of the communication problem, and decompose it along lines that make it more tractable. We believe that a layered approach similar to that defined by the communication networks community should also be used for on-chip communication design. The design issues are handled on physical and circuit layer, logic and architecture layer, and from system design methodology and tools point of view. Formal communication modeling and refinement is used to bridge the communication layers, and network-centric modeling of multiprocessor on-chip networks and socket-based design will serve the development of platforms for SoC and NoC integration. Interconnect-centric Design for Advanced SoC and NoC is concluded by two application examples: interconnect and memory organization in SoCs for advanced set-top boxes and TV, and a case study in NoC platform design for more generic applications.

Design of Interconnection Networks for Programmable Logic

Design of Interconnection Networks for Programmable Logic PDF Author: Guy Lemieux
Publisher: Springer Science & Business Media
ISBN: 9781402077005
Category : Technology & Engineering
Languages : en
Pages : 230

Book Description
Programmable Logic Devices (PLDs) have become the key implementation medium for the vast majority of digital circuits designed today. While the highest-volume devices are still built with full-fabrication rather than field programmability, the trend towards ever fewer ASICs and more FPGAs is clear. This makes the field of PLD architecture ever more important, as there is stronger demand for faster, smaller, cheaper and lower-power programmable logic. PLDs are 90% routing and 10% logic. This book focuses on that 90% that is the programmable routing: the manner in which the programmable wires are connected and the circuit design of the programmable switches themselves. Anyone seeking to understand the design of an FPGA needs to become lit erate in the complexities of programmable routing architecture. This book builds on the state-of-the-art of programmable interconnect by providing new methods of investigating and measuring interconnect structures, as well as new programmable switch basic circuits. The early portion of this book provides an excellent survey of interconnec tion structures and circuits as they exist today. Lemieux and Lewis then provide a new way to design sparse crossbars as they are used in PLDs, and show that the method works with an empirical validation. This is one of a few routing architecture works that employ analytical methods to deal with the routing archi tecture design. The analysis permits interesting insights not typically possible with the standard empirical approach.