Author: Coen de Graaf
Publisher: Springer
ISBN: 3319229516
Category : Science
Languages : en
Pages : 253
Book Description
This textbook is the second volume in the Theoretical Chemistry and Computational Modeling series and aims to explain the theoretical basis of magnetic interactions at a level that will be useful for master students in physical, inorganic and organic chemistry. The book gives a treatment of magnetic interactions in terms of the phenomenological spin Hamiltonians that have been such powerful tools for chemistry and physics in the past half century, starting from the simple Heisenberg and Ising Hamiltonians and ending with Hamiltonians that include biquadratic, cyclic or anisotropic exchange. On the other hand, it also explains how quantum chemical methods, reaching from simple mean field methods to accurate models that include the effects of electron correlation and spin-orbit coupling, can help to understand the magnetic properties. Connecting the two perspectives is an essential aspect of the book, since it leads to a deeper understanding of the relation between physical phenomena and basic properties. It also makes clear that in many cases one can derive magnetic coupling parameters not only from experiment, but also from accurate ab initio calculations. The book starts with introducing a selection of basic concepts and tools. Throughout the book the text is interlarded with exercises, stimulating the students to not only read but also verify the assertions and perform (parts of) the derivations by themselves. In addition, each chapter ends with a number of problems that can be used to check whether the material has been understood.
Magnetic Interactions in Molecules and Solids
Author: Coen de Graaf
Publisher: Springer
ISBN: 3319229516
Category : Science
Languages : en
Pages : 253
Book Description
This textbook is the second volume in the Theoretical Chemistry and Computational Modeling series and aims to explain the theoretical basis of magnetic interactions at a level that will be useful for master students in physical, inorganic and organic chemistry. The book gives a treatment of magnetic interactions in terms of the phenomenological spin Hamiltonians that have been such powerful tools for chemistry and physics in the past half century, starting from the simple Heisenberg and Ising Hamiltonians and ending with Hamiltonians that include biquadratic, cyclic or anisotropic exchange. On the other hand, it also explains how quantum chemical methods, reaching from simple mean field methods to accurate models that include the effects of electron correlation and spin-orbit coupling, can help to understand the magnetic properties. Connecting the two perspectives is an essential aspect of the book, since it leads to a deeper understanding of the relation between physical phenomena and basic properties. It also makes clear that in many cases one can derive magnetic coupling parameters not only from experiment, but also from accurate ab initio calculations. The book starts with introducing a selection of basic concepts and tools. Throughout the book the text is interlarded with exercises, stimulating the students to not only read but also verify the assertions and perform (parts of) the derivations by themselves. In addition, each chapter ends with a number of problems that can be used to check whether the material has been understood.
Publisher: Springer
ISBN: 3319229516
Category : Science
Languages : en
Pages : 253
Book Description
This textbook is the second volume in the Theoretical Chemistry and Computational Modeling series and aims to explain the theoretical basis of magnetic interactions at a level that will be useful for master students in physical, inorganic and organic chemistry. The book gives a treatment of magnetic interactions in terms of the phenomenological spin Hamiltonians that have been such powerful tools for chemistry and physics in the past half century, starting from the simple Heisenberg and Ising Hamiltonians and ending with Hamiltonians that include biquadratic, cyclic or anisotropic exchange. On the other hand, it also explains how quantum chemical methods, reaching from simple mean field methods to accurate models that include the effects of electron correlation and spin-orbit coupling, can help to understand the magnetic properties. Connecting the two perspectives is an essential aspect of the book, since it leads to a deeper understanding of the relation between physical phenomena and basic properties. It also makes clear that in many cases one can derive magnetic coupling parameters not only from experiment, but also from accurate ab initio calculations. The book starts with introducing a selection of basic concepts and tools. Throughout the book the text is interlarded with exercises, stimulating the students to not only read but also verify the assertions and perform (parts of) the derivations by themselves. In addition, each chapter ends with a number of problems that can be used to check whether the material has been understood.
Water
Author: John L. Finney
Publisher: Oxford University Press, USA
ISBN: 0198708726
Category : Nature
Languages : en
Pages : 161
Book Description
Around 71% of the Earth's surface is covered in water. In this Very Short Introduction John Finney explores the science of water, its structure and remarkable properties, and its vital role for life on Earth.
Publisher: Oxford University Press, USA
ISBN: 0198708726
Category : Nature
Languages : en
Pages : 161
Book Description
Around 71% of the Earth's surface is covered in water. In this Very Short Introduction John Finney explores the science of water, its structure and remarkable properties, and its vital role for life on Earth.
Molecular Interactions
Author: H. Ratajczak
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 664
Book Description
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 664
Book Description
Non-covalent Interactions
Author: Pavel Hobza
Publisher: Royal Society of Chemistry
ISBN: 1847558534
Category : Science
Languages : en
Pages : 239
Book Description
Co-authored by an experimentalist (Klaus M3ller-Dethlefs ) and theoretician (Pavel Hobza), the aim of this book is to provide a general introduction into the science behind non-covalent interactions and molecular complexes using some important experimental and theoretical methods and approaches.
Publisher: Royal Society of Chemistry
ISBN: 1847558534
Category : Science
Languages : en
Pages : 239
Book Description
Co-authored by an experimentalist (Klaus M3ller-Dethlefs ) and theoretician (Pavel Hobza), the aim of this book is to provide a general introduction into the science behind non-covalent interactions and molecular complexes using some important experimental and theoretical methods and approaches.
Molecular Interactions
Author: David A. Micha
Publisher: John Wiley & Sons
ISBN: 0470290749
Category : Science
Languages : en
Pages : 400
Book Description
A modern, comprehensive text and reference describing intermolecular forces, this book begins with coverage of the concepts and methods for simpler systems, then moves on to more advanced subjects for complex systems – emphasizing concepts and methods used in calculations with realistic models and compared with empirical data. Contains applications to many physical systems and worked examples Proceeds from introductory material to advanced modern treatments Has relevance for new materials, biological phenomena, and energy and fuels production
Publisher: John Wiley & Sons
ISBN: 0470290749
Category : Science
Languages : en
Pages : 400
Book Description
A modern, comprehensive text and reference describing intermolecular forces, this book begins with coverage of the concepts and methods for simpler systems, then moves on to more advanced subjects for complex systems – emphasizing concepts and methods used in calculations with realistic models and compared with empirical data. Contains applications to many physical systems and worked examples Proceeds from introductory material to advanced modern treatments Has relevance for new materials, biological phenomena, and energy and fuels production
Vibronic Interactions in Molecules and Crystals
Author: Isaac B. Bersuker
Publisher: Springer Science & Business Media
ISBN: 3642834795
Category : Science
Languages : en
Pages : 434
Book Description
Vibronic interaction effects constitute a new field of investigation in the physics and chemistry of molecules and crystals that combines all the phenomena and laws originating from the mixing of different electronic states by nuclear displacements. This field is based on a new concept which goes beyond the separate descriptions of electronic and nuclear motions in the adiabatic approximation. Publications on this topic often appear under the title of the lahn-Thller effect, although the area of application of the new approach is much wider: the term vibronic interaction seems to be more appropriate to the field as a whole. The present understanding of the subject was reached only recently, during the last quarter of a century. As a result of intensive development of the theory and experiment, it was shown that the nonadiabatic mixing of close-in-energy elec tronic states under nuclear displacements and the back influence of the modified electronic structure on the nuclear dynamics result in a series of new effects in the properties of molecules and crystals. The applications of the theory of vibronic in of spectroscopy [including visible, ultraviolet, in teractions cover the full range frared, Raman, EPR, NMR, nuclear quadrupole resonance (NQR), nuclear gam ma resonance (NOR), photoelectron and x-ray spectroscopy], polarizability and magnetic susceptibility, scattering phenomena, ideal and impurity crystal physics and chemistry (including structural as well as ferroelectric phase transitions), stereochemistry and instability of molecular (including biological) systems, mechanisms of chemical reactions and catalysis.
Publisher: Springer Science & Business Media
ISBN: 3642834795
Category : Science
Languages : en
Pages : 434
Book Description
Vibronic interaction effects constitute a new field of investigation in the physics and chemistry of molecules and crystals that combines all the phenomena and laws originating from the mixing of different electronic states by nuclear displacements. This field is based on a new concept which goes beyond the separate descriptions of electronic and nuclear motions in the adiabatic approximation. Publications on this topic often appear under the title of the lahn-Thller effect, although the area of application of the new approach is much wider: the term vibronic interaction seems to be more appropriate to the field as a whole. The present understanding of the subject was reached only recently, during the last quarter of a century. As a result of intensive development of the theory and experiment, it was shown that the nonadiabatic mixing of close-in-energy elec tronic states under nuclear displacements and the back influence of the modified electronic structure on the nuclear dynamics result in a series of new effects in the properties of molecules and crystals. The applications of the theory of vibronic in of spectroscopy [including visible, ultraviolet, in teractions cover the full range frared, Raman, EPR, NMR, nuclear quadrupole resonance (NQR), nuclear gam ma resonance (NOR), photoelectron and x-ray spectroscopy], polarizability and magnetic susceptibility, scattering phenomena, ideal and impurity crystal physics and chemistry (including structural as well as ferroelectric phase transitions), stereochemistry and instability of molecular (including biological) systems, mechanisms of chemical reactions and catalysis.
Non-Covalent Interactions in Proteins
Author: Andrey Karshikoff
Publisher: World Scientific Publishing Company
ISBN: 9789811228087
Category : Science
Languages : en
Pages : 446
Book Description
"This interdisciplinary book unites comprehensive considerations of the physics of non-covalent interactions with the specificity of their biochemical application in protein sciences, succeeding where pure physics and biochemical textbooks have failed. This second edition includes new chapters on intrinsically disordered proteins, microcalorimetry of proteins, cold denaturation, thermodynamic stability and thermal adaptability of proteins"--
Publisher: World Scientific Publishing Company
ISBN: 9789811228087
Category : Science
Languages : en
Pages : 446
Book Description
"This interdisciplinary book unites comprehensive considerations of the physics of non-covalent interactions with the specificity of their biochemical application in protein sciences, succeeding where pure physics and biochemical textbooks have failed. This second edition includes new chapters on intrinsically disordered proteins, microcalorimetry of proteins, cold denaturation, thermodynamic stability and thermal adaptability of proteins"--
Orbital Interactions in Chemistry
Author: Thomas A. Albright
Publisher: John Wiley & Sons
ISBN: 047108039X
Category : Science
Languages : en
Pages : 853
Book Description
Explains the underlying structure that unites all disciplinesin chemistry Now in its second edition, this book explores organic,organometallic, inorganic, solid state, and materials chemistry,demonstrating how common molecular orbital situations arisethroughout the whole chemical spectrum. The authors explore therelationships that enable readers to grasp the theory thatunderlies and connects traditional fields of study withinchemistry, thereby providing a conceptual framework with which tothink about chemical structure and reactivity problems. Orbital Interactions in Chemistry begins by developingmodels and reviewing molecular orbital theory. Next, the bookexplores orbitals in the organic-main group as well as in solids.Lastly, the book examines orbital interaction patterns that occurin inorganic-organometallic fields as well as clusterchemistry, surface chemistry, and magnetism in solids. This Second Edition has been thoroughly revised andupdated with new discoveries and computational tools since thepublication of the first edition more than twenty-five years ago.Among the new content, readers will find: * Two new chapters dedicated to surface science and magneticproperties * Additional examples of quantum calculations, focusing oninorganic and organometallic chemistry * Expanded treatment of group theory * New results from photoelectron spectroscopy Each section ends with a set of problems, enabling readers totest their grasp of new concepts as they progress through the text.Solutions are available on the book's ftp site. Orbital Interactions in Chemistry is written for bothresearchers and students in organic, inorganic, solid state,materials, and computational chemistry. All readers will discoverthe underlying structure that unites all disciplines inchemistry.
Publisher: John Wiley & Sons
ISBN: 047108039X
Category : Science
Languages : en
Pages : 853
Book Description
Explains the underlying structure that unites all disciplinesin chemistry Now in its second edition, this book explores organic,organometallic, inorganic, solid state, and materials chemistry,demonstrating how common molecular orbital situations arisethroughout the whole chemical spectrum. The authors explore therelationships that enable readers to grasp the theory thatunderlies and connects traditional fields of study withinchemistry, thereby providing a conceptual framework with which tothink about chemical structure and reactivity problems. Orbital Interactions in Chemistry begins by developingmodels and reviewing molecular orbital theory. Next, the bookexplores orbitals in the organic-main group as well as in solids.Lastly, the book examines orbital interaction patterns that occurin inorganic-organometallic fields as well as clusterchemistry, surface chemistry, and magnetism in solids. This Second Edition has been thoroughly revised andupdated with new discoveries and computational tools since thepublication of the first edition more than twenty-five years ago.Among the new content, readers will find: * Two new chapters dedicated to surface science and magneticproperties * Additional examples of quantum calculations, focusing oninorganic and organometallic chemistry * Expanded treatment of group theory * New results from photoelectron spectroscopy Each section ends with a set of problems, enabling readers totest their grasp of new concepts as they progress through the text.Solutions are available on the book's ftp site. Orbital Interactions in Chemistry is written for bothresearchers and students in organic, inorganic, solid state,materials, and computational chemistry. All readers will discoverthe underlying structure that unites all disciplines inchemistry.
Chemical Physics of Molecular Condensed Matter
Author: Kazuya Saito
Publisher: Springer Nature
ISBN: 9811590230
Category : Science
Languages : en
Pages : 228
Book Description
This book fills a gap in knowledge between chemistry- and physics-trained researchers about the properties of macroscopic (bulk) material. Although many good textbooks are available on solid-state (or condensed matter) physics, they generally treat simple systems such as simple metals and crystals consisting of atoms. On the other hand, textbooks on solid-state chemistry often avoid descriptions of theoretical background even at the simplest level. This book gives coherent descriptions from intermolecular interaction up to properties of condensed matter ranging from isotropic liquids to molecular crystals. By omitting details of specific systems for which comprehensive monographs are available—on liquid crystals and molecular conductors, for instance—this book highlights the effects of molecular properties, i.e., the presence of the shape and its deformation on the structure and properties of molecular systems.
Publisher: Springer Nature
ISBN: 9811590230
Category : Science
Languages : en
Pages : 228
Book Description
This book fills a gap in knowledge between chemistry- and physics-trained researchers about the properties of macroscopic (bulk) material. Although many good textbooks are available on solid-state (or condensed matter) physics, they generally treat simple systems such as simple metals and crystals consisting of atoms. On the other hand, textbooks on solid-state chemistry often avoid descriptions of theoretical background even at the simplest level. This book gives coherent descriptions from intermolecular interaction up to properties of condensed matter ranging from isotropic liquids to molecular crystals. By omitting details of specific systems for which comprehensive monographs are available—on liquid crystals and molecular conductors, for instance—this book highlights the effects of molecular properties, i.e., the presence of the shape and its deformation on the structure and properties of molecular systems.
Intermolecular and Surface Forces
Author: Jacob N. Israelachvili
Publisher: Academic Press
ISBN: 0123919339
Category : Science
Languages : en
Pages : 708
Book Description
Intermolecular and Surface Forces describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition. - Starts from the basics and builds up to more complex systems - Covers all aspects of intermolecular and interparticle forces both at the fundamental and applied levels - Multidisciplinary approach: bringing together and unifying phenomena from different fields - This new edition has an expanded Part III and new chapters on non-equilibrium (dynamic) interactions, and tribology (friction forces)
Publisher: Academic Press
ISBN: 0123919339
Category : Science
Languages : en
Pages : 708
Book Description
Intermolecular and Surface Forces describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition. - Starts from the basics and builds up to more complex systems - Covers all aspects of intermolecular and interparticle forces both at the fundamental and applied levels - Multidisciplinary approach: bringing together and unifying phenomena from different fields - This new edition has an expanded Part III and new chapters on non-equilibrium (dynamic) interactions, and tribology (friction forces)