Author: Mohammad Rehan
Publisher: Frontiers Media SA
ISBN: 2832542158
Category : Technology & Engineering
Languages : en
Pages : 178
Book Description
The United Nations' Sustainable Development Goals (SDGs) are designed to revolutionize societies to prepare for the future challenges. However, the practical implementation of such goals in many domains is are yet to be achieved despite of unique essence. Sustainable energy production (aligned with SDG 7), clean water and sanitation (aligned with SDG 6), sustainable waste services (aligned with SDG 11), and mitigating climate change impacts (aligned with SDG 13) have been the prime focus of SDGs. Moreover, much attention is being paid to research and development activities on waste prevention, reduction, recycling, and reuse to achieve responsible consumption and production (aligned with SDG 12). Waste biorefineries have emerged as a sustainable environmental management solution to achieve not only the aforementioned SDGs, but also to accomplish no poverty (aligned with SDG 1) and zero hunger (aligned with SDG 2) and to maintain well-being and good health aligned with (SDG 3) and decent work and economic growth (aligned with SDG 8) worldwide. This is true because integrated waste biorefineries can efficiently and sustainably produce fuels, heat, energy, power, and multiple value-added products and chemicals. It can further facilitate the transition from linear to circular economies and mitigate the major challenges faced, including environmental pollution, climate change, and adverse effects on public health. This Research Topic will focus on different types of waste biorefineries, current status, practical implications, optimization of waste-to-energy technologies, detailed life assessment studies, and future opportunities with a vision to achieve SDGs in the areas of sustainable energy generation, waste management, circular economies, and climate change mitigation. The editorial team of this special issue, consisting of world-renowned scientists including Highly Cited Researchers, welcomes submissions of original research articles, review articles, short communications, industrial and/or country/region case studies that covers the following enlisted topics: • Waste biorefineries (e.g., organic waste biorefinery, agricultural and forestry waste biorefinery, etc.) • Integration of different types of biorefineries • Sustainable development goals • Waste to energy technologies • Energy and resource recovery from biomass and other waste • Renewable and sustainable energy systems • Biomass and waste supply chain • Sustainable waste management systems • Mitigation of environmental pollution and climate change • Life cycle assessment • Sustainable circular and bio-based economies.
Integrated Waste Biorefineries: Achieving Sustainable Development Goals, 2nd edition
Author: Mohammad Rehan
Publisher: Frontiers Media SA
ISBN: 2832542158
Category : Technology & Engineering
Languages : en
Pages : 178
Book Description
The United Nations' Sustainable Development Goals (SDGs) are designed to revolutionize societies to prepare for the future challenges. However, the practical implementation of such goals in many domains is are yet to be achieved despite of unique essence. Sustainable energy production (aligned with SDG 7), clean water and sanitation (aligned with SDG 6), sustainable waste services (aligned with SDG 11), and mitigating climate change impacts (aligned with SDG 13) have been the prime focus of SDGs. Moreover, much attention is being paid to research and development activities on waste prevention, reduction, recycling, and reuse to achieve responsible consumption and production (aligned with SDG 12). Waste biorefineries have emerged as a sustainable environmental management solution to achieve not only the aforementioned SDGs, but also to accomplish no poverty (aligned with SDG 1) and zero hunger (aligned with SDG 2) and to maintain well-being and good health aligned with (SDG 3) and decent work and economic growth (aligned with SDG 8) worldwide. This is true because integrated waste biorefineries can efficiently and sustainably produce fuels, heat, energy, power, and multiple value-added products and chemicals. It can further facilitate the transition from linear to circular economies and mitigate the major challenges faced, including environmental pollution, climate change, and adverse effects on public health. This Research Topic will focus on different types of waste biorefineries, current status, practical implications, optimization of waste-to-energy technologies, detailed life assessment studies, and future opportunities with a vision to achieve SDGs in the areas of sustainable energy generation, waste management, circular economies, and climate change mitigation. The editorial team of this special issue, consisting of world-renowned scientists including Highly Cited Researchers, welcomes submissions of original research articles, review articles, short communications, industrial and/or country/region case studies that covers the following enlisted topics: • Waste biorefineries (e.g., organic waste biorefinery, agricultural and forestry waste biorefinery, etc.) • Integration of different types of biorefineries • Sustainable development goals • Waste to energy technologies • Energy and resource recovery from biomass and other waste • Renewable and sustainable energy systems • Biomass and waste supply chain • Sustainable waste management systems • Mitigation of environmental pollution and climate change • Life cycle assessment • Sustainable circular and bio-based economies.
Publisher: Frontiers Media SA
ISBN: 2832542158
Category : Technology & Engineering
Languages : en
Pages : 178
Book Description
The United Nations' Sustainable Development Goals (SDGs) are designed to revolutionize societies to prepare for the future challenges. However, the practical implementation of such goals in many domains is are yet to be achieved despite of unique essence. Sustainable energy production (aligned with SDG 7), clean water and sanitation (aligned with SDG 6), sustainable waste services (aligned with SDG 11), and mitigating climate change impacts (aligned with SDG 13) have been the prime focus of SDGs. Moreover, much attention is being paid to research and development activities on waste prevention, reduction, recycling, and reuse to achieve responsible consumption and production (aligned with SDG 12). Waste biorefineries have emerged as a sustainable environmental management solution to achieve not only the aforementioned SDGs, but also to accomplish no poverty (aligned with SDG 1) and zero hunger (aligned with SDG 2) and to maintain well-being and good health aligned with (SDG 3) and decent work and economic growth (aligned with SDG 8) worldwide. This is true because integrated waste biorefineries can efficiently and sustainably produce fuels, heat, energy, power, and multiple value-added products and chemicals. It can further facilitate the transition from linear to circular economies and mitigate the major challenges faced, including environmental pollution, climate change, and adverse effects on public health. This Research Topic will focus on different types of waste biorefineries, current status, practical implications, optimization of waste-to-energy technologies, detailed life assessment studies, and future opportunities with a vision to achieve SDGs in the areas of sustainable energy generation, waste management, circular economies, and climate change mitigation. The editorial team of this special issue, consisting of world-renowned scientists including Highly Cited Researchers, welcomes submissions of original research articles, review articles, short communications, industrial and/or country/region case studies that covers the following enlisted topics: • Waste biorefineries (e.g., organic waste biorefinery, agricultural and forestry waste biorefinery, etc.) • Integration of different types of biorefineries • Sustainable development goals • Waste to energy technologies • Energy and resource recovery from biomass and other waste • Renewable and sustainable energy systems • Biomass and waste supply chain • Sustainable waste management systems • Mitigation of environmental pollution and climate change • Life cycle assessment • Sustainable circular and bio-based economies.
Waste Biorefinery
Author: Thallada Bhaskar
Publisher: Elsevier
ISBN: 0444639934
Category : Technology & Engineering
Languages : en
Pages : 892
Book Description
Waste Biorefinery: Potential and Perspectives offers data-based information on the most cutting-edge processes for the utilisation of biogenic waste to produce biofuels, energy products, and biochemicals – a critical aspect of biorefinery. The book explores recent developments in biochemical and thermo-chemical methods of conversion and the potential generated by different kinds of biomass in more decentralized biorefineries. Additionally, the book discusses the move from 200 years of raw fossil materials to renewable resources and how this shift is accompanied by fundamental changes in industrial manufacturing technologies (from chemistry to biochemistry) and in logistics and manufacturing concepts (from petrochemical refineries to biorefineries). Waste Biorefinery: Potential and Perspectives designs concepts that enable modern biorefineries to utilize all types of biogenic wastes, and to integrate processes that convert byproduct streams to high-value products, achieving higher cost benefits. This book is an essential resource for researchers and students studying biomass, biorefineries, and biofuels/products/processes, as well as chemists, biochemical/chemical engineers, microbiologists, and biotechnologists working in industries and government agencies. - Details the most advanced and innovative methods for biomass conversion - Covers biochemical and thermo-chemical processes as well as product development - Discusses the integration of technologies to produce bio-fuels, energy products, and biochemicals - Illustrates specific applications in numerous case studies for reference and teaching purposes
Publisher: Elsevier
ISBN: 0444639934
Category : Technology & Engineering
Languages : en
Pages : 892
Book Description
Waste Biorefinery: Potential and Perspectives offers data-based information on the most cutting-edge processes for the utilisation of biogenic waste to produce biofuels, energy products, and biochemicals – a critical aspect of biorefinery. The book explores recent developments in biochemical and thermo-chemical methods of conversion and the potential generated by different kinds of biomass in more decentralized biorefineries. Additionally, the book discusses the move from 200 years of raw fossil materials to renewable resources and how this shift is accompanied by fundamental changes in industrial manufacturing technologies (from chemistry to biochemistry) and in logistics and manufacturing concepts (from petrochemical refineries to biorefineries). Waste Biorefinery: Potential and Perspectives designs concepts that enable modern biorefineries to utilize all types of biogenic wastes, and to integrate processes that convert byproduct streams to high-value products, achieving higher cost benefits. This book is an essential resource for researchers and students studying biomass, biorefineries, and biofuels/products/processes, as well as chemists, biochemical/chemical engineers, microbiologists, and biotechnologists working in industries and government agencies. - Details the most advanced and innovative methods for biomass conversion - Covers biochemical and thermo-chemical processes as well as product development - Discusses the integration of technologies to produce bio-fuels, energy products, and biochemicals - Illustrates specific applications in numerous case studies for reference and teaching purposes
Waste Biorefineries: Future Energy, Green Products and Waste Treatment
Author: Mohammad Rehan
Publisher: Frontiers Media SA
ISBN: 2889459934
Category :
Languages : en
Pages : 184
Book Description
Energy recovery from waste resources holds a significant role in the sustainable waste management hierarchy to support the concept of circular economies and to mitigate the challenges of waste originated problems of sanitation, environment, and public health. Today, waste disposal to landfills is the most widely used methodology, particularly in developing countries, because of limited budgets and lack of efficient infrastructure and facilities to maintain efficient and practical global standards. As a consequence, the dump-sites or non-sanitary landfills have become the significant sources of greenhouse gases emissions, soil and water contamination, unpleasant odors, leachate, and disease spreading vectors, flies, and rodents. However, waste can be utilized to produce a range of potential products such as energy, fuels and value-added products under waste biorefineries. A holistic and quantitative view, such as waste biorefinery, on waste management must be linked to the actual country, taking into account its socio-economic situation, local waste sources, and composition, as well as the available markets for the recovered energy and products. Therefore, it is critical to understand that solutions cannot be just copied from one region to the others. In fact, all waste handling, transportation, and treatment can represent a burden to the cities’ environment and macro and micro economics, except for the benefits obtained from recovered materials and energy. Equally significant is a clear and quantitative understanding of the industrial, and public potential of utilizing recovered materials and energy in the markets as these can be reached without exacerbating the environmental issues using excessive transport. The book explores new advancements and discoveries on the development of emerging waste-to-energy technologies, practical implementation, and lessons learned from sustainable wastemanagement practices under waste biorefinery concept, which will accelerate the growth of circular economies in the world. The articles presented in this book have been written by expert researchers and academics working in institutions at different countries across the world including Germany, Greece, Japan, South Korea, China, Saudi Arabia, Pakistan, Indonesia, Malaysia, Iran, and India. The research articles have been arranged into three main subject categories; 1) Resource recovery from waste, 2) Waste to energy technologies and 3) Waste biorefineries. This book will serve as an important resource for research students, academics, industry, policy makers, and government agencies working in the field of integrated waste management, energy and resource recovery, waste to energy technologies, waste biorefineries etc. The editorial team of this book is very grateful to all the authors for their excellent contributions and making the book successful.
Publisher: Frontiers Media SA
ISBN: 2889459934
Category :
Languages : en
Pages : 184
Book Description
Energy recovery from waste resources holds a significant role in the sustainable waste management hierarchy to support the concept of circular economies and to mitigate the challenges of waste originated problems of sanitation, environment, and public health. Today, waste disposal to landfills is the most widely used methodology, particularly in developing countries, because of limited budgets and lack of efficient infrastructure and facilities to maintain efficient and practical global standards. As a consequence, the dump-sites or non-sanitary landfills have become the significant sources of greenhouse gases emissions, soil and water contamination, unpleasant odors, leachate, and disease spreading vectors, flies, and rodents. However, waste can be utilized to produce a range of potential products such as energy, fuels and value-added products under waste biorefineries. A holistic and quantitative view, such as waste biorefinery, on waste management must be linked to the actual country, taking into account its socio-economic situation, local waste sources, and composition, as well as the available markets for the recovered energy and products. Therefore, it is critical to understand that solutions cannot be just copied from one region to the others. In fact, all waste handling, transportation, and treatment can represent a burden to the cities’ environment and macro and micro economics, except for the benefits obtained from recovered materials and energy. Equally significant is a clear and quantitative understanding of the industrial, and public potential of utilizing recovered materials and energy in the markets as these can be reached without exacerbating the environmental issues using excessive transport. The book explores new advancements and discoveries on the development of emerging waste-to-energy technologies, practical implementation, and lessons learned from sustainable wastemanagement practices under waste biorefinery concept, which will accelerate the growth of circular economies in the world. The articles presented in this book have been written by expert researchers and academics working in institutions at different countries across the world including Germany, Greece, Japan, South Korea, China, Saudi Arabia, Pakistan, Indonesia, Malaysia, Iran, and India. The research articles have been arranged into three main subject categories; 1) Resource recovery from waste, 2) Waste to energy technologies and 3) Waste biorefineries. This book will serve as an important resource for research students, academics, industry, policy makers, and government agencies working in the field of integrated waste management, energy and resource recovery, waste to energy technologies, waste biorefineries etc. The editorial team of this book is very grateful to all the authors for their excellent contributions and making the book successful.
Waste Biorefinery
Author: Thallada Bhaskar
Publisher: Elsevier
ISBN: 0128218940
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
Waste Biorefinery: Value Addition through Resources Utilization provides scientific and technical information surrounding the most advanced and innovative processing technologies used for the conversion of biogenic waste to biofuels, energy products and biochemicals. The book covers recent developments and achievements in the field of biochemical, thermo-chemical and hybrid methods and the necessities and potentials generated by different kinds of residual streams, including biomass in presumably more decentralized biorefineries. An assortment of case-studies from developing and developed countries illustrate the topics presented, covering energy, chemicals, fuels, food for animal recovery from different waste matrices, and more. Finally, the advantages and limitations of different technologies are discussed, considering local energy demand, government policies, environmental impacts and education in bioenergy. This book will serve as an excellent resource for science graduates, chemical engineers, environmental engineers, biotechnologists and industrial experts in these areas. - Provides information on the most advanced and innovative processes for biomass conversion - Covers information on biochemical and thermochemical processes and product developments surrounding the principles of biorefining - Presents information on the integration of processes and technologies for the production of biofuels, energy products and biochemicals
Publisher: Elsevier
ISBN: 0128218940
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
Waste Biorefinery: Value Addition through Resources Utilization provides scientific and technical information surrounding the most advanced and innovative processing technologies used for the conversion of biogenic waste to biofuels, energy products and biochemicals. The book covers recent developments and achievements in the field of biochemical, thermo-chemical and hybrid methods and the necessities and potentials generated by different kinds of residual streams, including biomass in presumably more decentralized biorefineries. An assortment of case-studies from developing and developed countries illustrate the topics presented, covering energy, chemicals, fuels, food for animal recovery from different waste matrices, and more. Finally, the advantages and limitations of different technologies are discussed, considering local energy demand, government policies, environmental impacts and education in bioenergy. This book will serve as an excellent resource for science graduates, chemical engineers, environmental engineers, biotechnologists and industrial experts in these areas. - Provides information on the most advanced and innovative processes for biomass conversion - Covers information on biochemical and thermochemical processes and product developments surrounding the principles of biorefining - Presents information on the integration of processes and technologies for the production of biofuels, energy products and biochemicals
Integrated Forest Biorefineries
Author: Lew Christopher
Publisher: Royal Society of Chemistry
ISBN: 1849735069
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
This reference book describes how bioprocessing and biotechnology could enhance the value extracted from wood-based lignocellulosic fiber by employing both biochemical and thermochemical conversion processes. It documents recent accomplishments and suggests future prospects for research and development of integrated forest biorefineries (IFBR) as the path forward for the pulp, paper and other fiber-processing industries. This is the only book to cover this area of high economic, social, and environmental importance. It is aimed at industrialists and academics from diverse science and engineering backgrounds including chemical and biotechnology companies, governmental and professional bodies, and scholarly societies. The Editor and contributors are internationally recognized scientists and many are leaders in their respective fields. The book starts with an introductory overview of the current state of biorefining and a justification for future developments. The next four chapters deal with social, economic and environmental issues related to regulations, biomass production and supply, process modelling, and life cycle analysis. Subsequent chapters focus on the extraction of biochemicals from biomass and their potential utilization to add value to the IFBR prior to pulping. The book then presents, compares and evaluates two types of forest biorefineries based on kraft and organosolv pulping. Finally, the book assess the potential of waste biomass and streams, such paper mill sludge and black liquor, to serve as feedstock for biofuel production and value-added biomaterials through both the biochemical and thermochemical routes of biomass bioprocessing. The economics of the described IFBR processes and products, and their environmental impact, is a major focus in most of the chapters. Practical examples are presented where relevant and applicable.
Publisher: Royal Society of Chemistry
ISBN: 1849735069
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
This reference book describes how bioprocessing and biotechnology could enhance the value extracted from wood-based lignocellulosic fiber by employing both biochemical and thermochemical conversion processes. It documents recent accomplishments and suggests future prospects for research and development of integrated forest biorefineries (IFBR) as the path forward for the pulp, paper and other fiber-processing industries. This is the only book to cover this area of high economic, social, and environmental importance. It is aimed at industrialists and academics from diverse science and engineering backgrounds including chemical and biotechnology companies, governmental and professional bodies, and scholarly societies. The Editor and contributors are internationally recognized scientists and many are leaders in their respective fields. The book starts with an introductory overview of the current state of biorefining and a justification for future developments. The next four chapters deal with social, economic and environmental issues related to regulations, biomass production and supply, process modelling, and life cycle analysis. Subsequent chapters focus on the extraction of biochemicals from biomass and their potential utilization to add value to the IFBR prior to pulping. The book then presents, compares and evaluates two types of forest biorefineries based on kraft and organosolv pulping. Finally, the book assess the potential of waste biomass and streams, such paper mill sludge and black liquor, to serve as feedstock for biofuel production and value-added biomaterials through both the biochemical and thermochemical routes of biomass bioprocessing. The economics of the described IFBR processes and products, and their environmental impact, is a major focus in most of the chapters. Practical examples are presented where relevant and applicable.
Integrated Biorefineries
Author: Paul R. Stuart
Publisher: CRC Press
ISBN: 1439803471
Category : Science
Languages : en
Pages : 843
Book Description
Integrated Biorefineries: Design, Analysis, and Optimization examines how to create a competitive edge in biorefinery innovation through integration into existing processes and infrastructure. Leading experts from around the world working in design, synthesis, and optimization of integrated biorefineries present the various aspects of this complex
Publisher: CRC Press
ISBN: 1439803471
Category : Science
Languages : en
Pages : 843
Book Description
Integrated Biorefineries: Design, Analysis, and Optimization examines how to create a competitive edge in biorefinery innovation through integration into existing processes and infrastructure. Leading experts from around the world working in design, synthesis, and optimization of integrated biorefineries present the various aspects of this complex
Resource Recovery from Wastes
Author: Lynne E Macaskie
Publisher: Royal Society of Chemistry
ISBN: 1788018656
Category : Technology & Engineering
Languages : en
Pages : 466
Book Description
The concept of a circular economy has been gaining increasing attention in recent years. Many of the sources of chemicals we have become reliant on are dwindling and the accumulation of waste products poses a serious environmental problem. By recovering resources from these waste materials, we can reduce our dependence on virgin feedstocks that may not be sustainable as well as reducing the quantity of material going to landfill sites. Incorporating different perspectives from a global authorship, this book aims to introduce systems thinking to the field of waste and resource management. The topics covered range from the use of biogeochemical processes in resource recovery to the application of engineered nanomaterials, with information relevant to both academia and industry. The broad range and cross-disciplinary nature of the topics in this book make it a valuable resource for those working in circular economy research, green chemistry and waste and resource management.
Publisher: Royal Society of Chemistry
ISBN: 1788018656
Category : Technology & Engineering
Languages : en
Pages : 466
Book Description
The concept of a circular economy has been gaining increasing attention in recent years. Many of the sources of chemicals we have become reliant on are dwindling and the accumulation of waste products poses a serious environmental problem. By recovering resources from these waste materials, we can reduce our dependence on virgin feedstocks that may not be sustainable as well as reducing the quantity of material going to landfill sites. Incorporating different perspectives from a global authorship, this book aims to introduce systems thinking to the field of waste and resource management. The topics covered range from the use of biogeochemical processes in resource recovery to the application of engineered nanomaterials, with information relevant to both academia and industry. The broad range and cross-disciplinary nature of the topics in this book make it a valuable resource for those working in circular economy research, green chemistry and waste and resource management.
Clean Energy and Resource Recovery
Author: Vinay Kumar Tyagi
Publisher: Elsevier
ISBN: 0323901794
Category : Science
Languages : en
Pages : 484
Book Description
Clean Energy and Resource Recovery: Wastewater Treatment Plants as Bio-refineries, Volume 2, summarizes the fundamentals of various treatment modes applied to the recovery of energy and value-added products from wastewater treatment plants. The book addresses the production of biofuel, heat, and electricity, chemicals, feed, and other products from municipal wastewater, industrial wastewater, and sludge. It intends to provide the readers an account of up-to-date information on the recovery of biofuels and other value-added products using conventional and advanced technological developments. The book starts with identifying the key problems of the sectors and then provides solutions to them with step-by-step guidance on the implementation of processes and procedures. Titles compiled in this book further explore related issues like the safe disposal of leftovers, from a local to global scale. Finally, the book sheds light on how wastewater treatment facilities reduce stress on energy systems, decrease air and water pollution, build resiliency, and drive local economic activity.As a compliment to Volume 1: Biomass Waste Based Biorefineries, Clean Energy and Resource Recovery, Volume 2: Wastewater Treatment Plants as Bio-refineries is a comprehensive reference on all aspects of energy and resource recovery from wastewater. The book is going to be a handy reference tool for energy researchers, environmental scientists, and civil, chemical, and municipal engineers interested in waste-to-energy. - Offers a comprehensive overview of the fundamental treatments and methods used in the recovery of energy and value-added products from wastewater - Identifies solutions to key problems related to wastewater to energy/resource recovery through conventional and advanced technologies and explore the alternatives - Provides step-by-step guidance on procedures and calculations from practical field data - Includes successful case studies from both developing and developed countries
Publisher: Elsevier
ISBN: 0323901794
Category : Science
Languages : en
Pages : 484
Book Description
Clean Energy and Resource Recovery: Wastewater Treatment Plants as Bio-refineries, Volume 2, summarizes the fundamentals of various treatment modes applied to the recovery of energy and value-added products from wastewater treatment plants. The book addresses the production of biofuel, heat, and electricity, chemicals, feed, and other products from municipal wastewater, industrial wastewater, and sludge. It intends to provide the readers an account of up-to-date information on the recovery of biofuels and other value-added products using conventional and advanced technological developments. The book starts with identifying the key problems of the sectors and then provides solutions to them with step-by-step guidance on the implementation of processes and procedures. Titles compiled in this book further explore related issues like the safe disposal of leftovers, from a local to global scale. Finally, the book sheds light on how wastewater treatment facilities reduce stress on energy systems, decrease air and water pollution, build resiliency, and drive local economic activity.As a compliment to Volume 1: Biomass Waste Based Biorefineries, Clean Energy and Resource Recovery, Volume 2: Wastewater Treatment Plants as Bio-refineries is a comprehensive reference on all aspects of energy and resource recovery from wastewater. The book is going to be a handy reference tool for energy researchers, environmental scientists, and civil, chemical, and municipal engineers interested in waste-to-energy. - Offers a comprehensive overview of the fundamental treatments and methods used in the recovery of energy and value-added products from wastewater - Identifies solutions to key problems related to wastewater to energy/resource recovery through conventional and advanced technologies and explore the alternatives - Provides step-by-step guidance on procedures and calculations from practical field data - Includes successful case studies from both developing and developed countries
Sustainability and the U.S. EPA
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309212553
Category : Technology & Engineering
Languages : en
Pages : 162
Book Description
Sustainability is based on a simple and long-recognized factual premise: Everything that humans require for their survival and well-being depends, directly or indirectly, on the natural environment. The environment provides the air we breathe, the water we drink, and the food we eat. Recognizing the importance of sustainability to its work, the U.S. Environmental Protection Agency (EPA) has been working to create programs and applications in a variety of areas to better incorporate sustainability into decision-making at the agency. To further strengthen the scientific basis for sustainability as it applies to human health and environmental protection, the EPA asked the National Research Council (NRC) to provide a framework for incorporating sustainability into the EPA's principles and decision-making. This framework, Sustainability and the U.S. EPA, provides recommendations for a sustainability approach that both incorporates and goes beyond an approach based on assessing and managing the risks posed by pollutants that has largely shaped environmental policy since the 1980s. Although risk-based methods have led to many successes and remain important tools, the report concludes that they are not adequate to address many of the complex problems that put current and future generations at risk, such as depletion of natural resources, climate change, and loss of biodiversity. Moreover, sophisticated tools are increasingly available to address cross-cutting, complex, and challenging issues that go beyond risk management. The report recommends that EPA formally adopt as its sustainability paradigm the widely used "three pillars" approach, which means considering the environmental, social, and economic impacts of an action or decision. Health should be expressly included in the "social" pillar. EPA should also articulate its vision for sustainability and develop a set of sustainability principles that would underlie all agency policies and programs.
Publisher: National Academies Press
ISBN: 0309212553
Category : Technology & Engineering
Languages : en
Pages : 162
Book Description
Sustainability is based on a simple and long-recognized factual premise: Everything that humans require for their survival and well-being depends, directly or indirectly, on the natural environment. The environment provides the air we breathe, the water we drink, and the food we eat. Recognizing the importance of sustainability to its work, the U.S. Environmental Protection Agency (EPA) has been working to create programs and applications in a variety of areas to better incorporate sustainability into decision-making at the agency. To further strengthen the scientific basis for sustainability as it applies to human health and environmental protection, the EPA asked the National Research Council (NRC) to provide a framework for incorporating sustainability into the EPA's principles and decision-making. This framework, Sustainability and the U.S. EPA, provides recommendations for a sustainability approach that both incorporates and goes beyond an approach based on assessing and managing the risks posed by pollutants that has largely shaped environmental policy since the 1980s. Although risk-based methods have led to many successes and remain important tools, the report concludes that they are not adequate to address many of the complex problems that put current and future generations at risk, such as depletion of natural resources, climate change, and loss of biodiversity. Moreover, sophisticated tools are increasingly available to address cross-cutting, complex, and challenging issues that go beyond risk management. The report recommends that EPA formally adopt as its sustainability paradigm the widely used "three pillars" approach, which means considering the environmental, social, and economic impacts of an action or decision. Health should be expressly included in the "social" pillar. EPA should also articulate its vision for sustainability and develop a set of sustainability principles that would underlie all agency policies and programs.
Sustainable Resource Recovery and Zero Waste Approaches
Author: Mohammad Taherzadeh
Publisher: Elsevier
ISBN: 0444642838
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
Sustainable Resource Recovery and Zero Waste Approaches covers waste reduction, biological, thermal and recycling methods of waste recovery, and their conversion into a variety of products. In addition, the social, economic and environmental aspects are also explored, making this a useful textbook for environmental courses and a reference book for both universities and companies. - Provides a novel approach on how to achieve zero wastes in a society - Shows the roadmap on achieving Sustainable Development Goals - Considers critical aspects of municipal waste management - Covers recent developments in waste biorefinery, thermal processes, anaerobic digestion, material recycling and landfill mining
Publisher: Elsevier
ISBN: 0444642838
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
Sustainable Resource Recovery and Zero Waste Approaches covers waste reduction, biological, thermal and recycling methods of waste recovery, and their conversion into a variety of products. In addition, the social, economic and environmental aspects are also explored, making this a useful textbook for environmental courses and a reference book for both universities and companies. - Provides a novel approach on how to achieve zero wastes in a society - Shows the roadmap on achieving Sustainable Development Goals - Considers critical aspects of municipal waste management - Covers recent developments in waste biorefinery, thermal processes, anaerobic digestion, material recycling and landfill mining