Stochastic Integration in Banach Spaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stochastic Integration in Banach Spaces PDF full book. Access full book title Stochastic Integration in Banach Spaces by Vidyadhar Mandrekar. Download full books in PDF and EPUB format.

Stochastic Integration in Banach Spaces

Stochastic Integration in Banach Spaces PDF Author: Vidyadhar Mandrekar
Publisher: Springer
ISBN: 3319128531
Category : Mathematics
Languages : en
Pages : 213

Book Description
Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integration theory, existence and uniqueness results and stability theory. The results will be of particular interest to natural scientists and the finance community. Readers should ideally be familiar with stochastic processes and probability theory in general, as well as functional analysis and in particular the theory of operator semigroups. ​

Stochastic Integration in Banach Spaces

Stochastic Integration in Banach Spaces PDF Author: Vidyadhar Mandrekar
Publisher: Springer
ISBN: 3319128531
Category : Mathematics
Languages : en
Pages : 213

Book Description
Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integration theory, existence and uniqueness results and stability theory. The results will be of particular interest to natural scientists and the finance community. Readers should ideally be familiar with stochastic processes and probability theory in general, as well as functional analysis and in particular the theory of operator semigroups. ​

Stochastic Volatility

Stochastic Volatility PDF Author: Neil Shephard
Publisher: Oxford University Press, USA
ISBN: 0199257205
Category : Business & Economics
Languages : en
Pages : 534

Book Description
Stochastic volatility is the main concept used in the fields of financial economics and mathematical finance to deal with time-varying volatility in financial markets. This work brings together some of the main papers that have influenced this field, andshows that the development of this subject has been highly multidisciplinary.

Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities

Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities PDF Author: Anatoli? Vital?evich Svishchuk
Publisher: World Scientific
ISBN: 9814440132
Category : Business & Economics
Languages : en
Pages : 326

Book Description
Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities is devoted to the modeling and pricing of various kinds of swaps, such as those for variance, volatility, covariance, correlation, for financial and energy markets with different stochastic volatilities, which include CIR process, regime-switching, delayed, mean-reverting, multi-factor, fractional, Levy-based, semi-Markov and COGARCH(1,1). One of the main methods used in this book is change of time method. The book outlines how the change of time method works for different kinds of models and problems arising in financial and energy markets and the associated problems in modeling and pricing of a variety of swaps. The book also contains a study of a new model, the delayed Heston model, which improves the volatility surface fitting as compared with the classical Heston model. The author calculates variance and volatility swaps for this model and provides hedging techniques. The book considers content on the pricing of variance and volatility swaps and option pricing formula for mean-reverting models in energy markets. Some topics such as forward and futures in energy markets priced by multi-factor Levy models and generalization of Black-76 formula with Markov-modulated volatility are part of the book as well, and it includes many numerical examples such as S&P60 Canada Index, S&P500 Index and AECO Natural Gas Index.

From Stochastic Calculus to Mathematical Finance

From Stochastic Calculus to Mathematical Finance PDF Author: Yu. Kabanov
Publisher: Springer Science & Business Media
ISBN: 3540307885
Category : Mathematics
Languages : en
Pages : 659

Book Description
Dedicated to the Russian mathematician Albert Shiryaev on his 70th birthday, this is a collection of papers written by his former students, co-authors and colleagues. The book represents the modern state of art of a quickly maturing theory and will be an essential source and reading for researchers in this area. Diversity of topics and comprehensive style of the papers make the book attractive for PhD students and young researchers.

Handbook of Financial Time Series

Handbook of Financial Time Series PDF Author: Torben Gustav Andersen
Publisher: Springer Science & Business Media
ISBN: 3540712976
Category : Business & Economics
Languages : en
Pages : 1045

Book Description
The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.

Levy Processes in Credit Risk

Levy Processes in Credit Risk PDF Author: Wim Schoutens
Publisher: John Wiley & Sons
ISBN: 0470685069
Category : Business & Economics
Languages : en
Pages : 213

Book Description
This book is an introductory guide to using Lévy processes for credit risk modelling. It covers all types of credit derivatives: from the single name vanillas such as Credit Default Swaps (CDSs) right through to structured credit risk products such as Collateralized Debt Obligations (CDOs), Constant Proportion Portfolio Insurances (CPPIs) and Constant Proportion Debt Obligations (CPDOs) as well as new advanced rating models for Asset Backed Securities (ABSs). Jumps and extreme events are crucial stylized features, essential in the modelling of the very volatile credit markets - the recent turmoil in the credit markets has once again illustrated the need for more refined models. Readers will learn how the classical models (driven by Brownian motions and Black-Scholes settings) can be significantly improved by using the more flexible class of Lévy processes. By doing this, extreme event and jumps can be introduced into the models to give more reliable pricing and a better assessment of the risks. The book brings in high-tech financial engineering models for the detailed modelling of credit risk instruments, setting up the theoretical framework behind the application of Lévy Processes to Credit Risk Modelling before moving on to the practical implementation. Complex credit derivatives structures such as CDOs, ABSs, CPPIs, CPDOs are analysed and illustrated with market data.

Mathematical Control Theory and Finance

Mathematical Control Theory and Finance PDF Author: Andrey Sarychev
Publisher: Springer Science & Business Media
ISBN: 354069532X
Category : Mathematics
Languages : en
Pages : 418

Book Description
Control theory provides a large set of theoretical and computational tools with applications in a wide range of ?elds, running from ”pure” branches of mathematics, like geometry, to more applied areas where the objective is to ?nd solutions to ”real life” problems, as is the case in robotics, control of industrial processes or ?nance. The ”high tech” character of modern business has increased the need for advanced methods. These rely heavily on mathematical techniques and seem indispensable for competitiveness of modern enterprises. It became essential for the ?nancial analyst to possess a high level of mathematical skills. C- versely, the complex challenges posed by the problems and models relevant to ?nance have, for a long time, been an important source of new research topics for mathematicians. The use of techniques from stochastic optimal control constitutes a well established and important branch of mathematical ?nance. Up to now, other branches of control theory have found comparatively less application in ?n- cial problems. To some extent, deterministic and stochastic control theories developed as di?erent branches of mathematics. However, there are many points of contact between them and in recent years the exchange of ideas between these ?elds has intensi?ed. Some concepts from stochastic calculus (e.g., rough paths) havedrawntheattentionofthedeterministiccontroltheorycommunity.Also, some ideas and tools usual in deterministic control (e.g., geometric, algebraic or functional-analytic methods) can be successfully applied to stochastic c- trol.

Macroeconometrics and Time Series Analysis

Macroeconometrics and Time Series Analysis PDF Author: Steven Durlauf
Publisher: Springer
ISBN: 0230280838
Category : Business & Economics
Languages : en
Pages : 417

Book Description
Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.

Handbook of Heavy Tailed Distributions in Finance

Handbook of Heavy Tailed Distributions in Finance PDF Author: S.T Rachev
Publisher: Elsevier
ISBN: 0080557732
Category : Business & Economics
Languages : en
Pages : 707

Book Description
The Handbooks in Finance are intended to be a definitive source for comprehensive and accessible information in the field of finance. Each individual volume in the series should present an accurate self-contained survey of a sub-field of finance, suitable for use by finance and economics professors and lecturers, professional researchers, graduate students and as a teaching supplement. The goal is to have a broad group of outstanding volumes in various areas of finance. The Handbook of Heavy Tailed Distributions in Finance is the first handbook to be published in this series.This volume presents current research focusing on heavy tailed distributions in finance. The contributions cover methodological issues, i.e., probabilistic, statistical and econometric modelling under non- Gaussian assumptions, as well as the applications of the stable and other non -Gaussian models in finance and risk management.

Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models PDF Author: Jaya P. N. Bishwal
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634

Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.