Author: Troy K. Townsend
Publisher: Springer Science & Business Media
ISBN: 331905242X
Category : Science
Languages : en
Pages : 80
Book Description
Troy Townsend's thesis explores the structure, energetics and activity of three inorganic nanocrystal photocatalysts. The goal of this work is to investigate the potential of metal oxide nanocrystals for application in photocatalytic water splitting, which could one day provide us with clean hydrogen fuel derived from water and solar energy. Specifically, Townsend's work addresses the effects of co-catalyst addition to niobium oxide nanotubes for photocatalytic water reduction to hydrogen, and the first use of iron oxide 'rust' in nanocrystal suspensions for oxygen production. In addition, Townsend studies a nickel/oxide-strontium titanate nanocomposite which can be described as one of only four nanoscale water splitting photocatalysts. He also examines the charge transport for this system. Overall, this collection of studies brings relevance to the design of inorganic nanomaterials for photocatalytic water splitting while introducing new directions for solar energy conversion.
Inorganic Metal Oxide Nanocrystal Photocatalysts for Solar Fuel Generation from Water
Author: Troy K. Townsend
Publisher: Springer Science & Business Media
ISBN: 331905242X
Category : Science
Languages : en
Pages : 80
Book Description
Troy Townsend's thesis explores the structure, energetics and activity of three inorganic nanocrystal photocatalysts. The goal of this work is to investigate the potential of metal oxide nanocrystals for application in photocatalytic water splitting, which could one day provide us with clean hydrogen fuel derived from water and solar energy. Specifically, Townsend's work addresses the effects of co-catalyst addition to niobium oxide nanotubes for photocatalytic water reduction to hydrogen, and the first use of iron oxide 'rust' in nanocrystal suspensions for oxygen production. In addition, Townsend studies a nickel/oxide-strontium titanate nanocomposite which can be described as one of only four nanoscale water splitting photocatalysts. He also examines the charge transport for this system. Overall, this collection of studies brings relevance to the design of inorganic nanomaterials for photocatalytic water splitting while introducing new directions for solar energy conversion.
Publisher: Springer Science & Business Media
ISBN: 331905242X
Category : Science
Languages : en
Pages : 80
Book Description
Troy Townsend's thesis explores the structure, energetics and activity of three inorganic nanocrystal photocatalysts. The goal of this work is to investigate the potential of metal oxide nanocrystals for application in photocatalytic water splitting, which could one day provide us with clean hydrogen fuel derived from water and solar energy. Specifically, Townsend's work addresses the effects of co-catalyst addition to niobium oxide nanotubes for photocatalytic water reduction to hydrogen, and the first use of iron oxide 'rust' in nanocrystal suspensions for oxygen production. In addition, Townsend studies a nickel/oxide-strontium titanate nanocomposite which can be described as one of only four nanoscale water splitting photocatalysts. He also examines the charge transport for this system. Overall, this collection of studies brings relevance to the design of inorganic nanomaterials for photocatalytic water splitting while introducing new directions for solar energy conversion.
Photocatalytic Hydrogen Evolution
Author: Misook Kang
Publisher: MDPI
ISBN: 3039363107
Category : Technology & Engineering
Languages : en
Pages : 136
Book Description
Energy crises and global warming pose serious challenges to researchers in their attempt to develop a sustainable society for the future. Solar energy conversion is a remarkable, clean, and sustainable way to nullify the effects of fossil fuels. The findings of photocatalytic hydrogen production (PCHP) by Fujishima and Honda propose that “water will be the coal for the future”. Hydrogen is a carbon-free clean fuel with a high specific energy of combustion. Titanium oxide (TiO2), graphitic-carbon nitride (g-C3N4) and cadmium sulfide (CdS) are three pillars of water splitting photocatalysts owing to their superior electronic and optical properties. Tremendous research efforts have been made in recent years to fabricate visible or solar-light, active photocatalysts. The significant features of various oxide, sulfide, and carbon based photocatalysts for cost-effective hydrogen production are presented in this Special Issue. The insights of sacrificial agents on the hydrogen production efficiency of catalysts are also presented in this issue.
Publisher: MDPI
ISBN: 3039363107
Category : Technology & Engineering
Languages : en
Pages : 136
Book Description
Energy crises and global warming pose serious challenges to researchers in their attempt to develop a sustainable society for the future. Solar energy conversion is a remarkable, clean, and sustainable way to nullify the effects of fossil fuels. The findings of photocatalytic hydrogen production (PCHP) by Fujishima and Honda propose that “water will be the coal for the future”. Hydrogen is a carbon-free clean fuel with a high specific energy of combustion. Titanium oxide (TiO2), graphitic-carbon nitride (g-C3N4) and cadmium sulfide (CdS) are three pillars of water splitting photocatalysts owing to their superior electronic and optical properties. Tremendous research efforts have been made in recent years to fabricate visible or solar-light, active photocatalysts. The significant features of various oxide, sulfide, and carbon based photocatalysts for cost-effective hydrogen production are presented in this Special Issue. The insights of sacrificial agents on the hydrogen production efficiency of catalysts are also presented in this issue.
Nanostructured Materials for Visible Light Photocatalysis
Author: Arpan Kumar Nayak
Publisher: Elsevier
ISBN: 0128230509
Category : Technology & Engineering
Languages : en
Pages : 638
Book Description
Nanostructured Materials for Visible Light Photocatalysis describes the various methods of synthesizing different classes of nanostructured materials that are used as photocatalysts for the degradation of organic hazardous dyes under visible light irradiation. The first three chapters include a general introduction, basic principles, mechanisms, and synthesis methods of nanomaterials for visible light photocatalysis. Recent advances in carbon, bismuth series, transition metal oxide and chalcogenides-based nanostructured materials for visible light photocatalysis are discussed. Later chapters describe the role of phosphides, nitrides, and rare earth-based nanostructured-based materials in visible light photocatalysis, as well as the characteristics, synthesis, and fabrication of photocatalysts. The role of doping, composites, defects, different facets, morphology of nanostructured materials and green technology for efficient dye removal under visible-light irradiation are also explored. Other topics covered include large-scale production of nanostructured materials, the challenges in present photocatalytic research, the future scope of nanostructured materials regarding environmental hazard remediation under visible light, and solar light harvesting. This book is a valuable reference to researchers and enables them to learn more about designing advanced nanostructured materials for wastewater treatment and visible-light irradiation. - Covers all the recent developments of nanostructured photocatalytic materials - Provides a clear overview of the mechanism of visible light photocatalysis and the controlled synthesis of nanostructured materials - Assesses the major challenges of creating visible light photocatalysis systems at the nanoscale
Publisher: Elsevier
ISBN: 0128230509
Category : Technology & Engineering
Languages : en
Pages : 638
Book Description
Nanostructured Materials for Visible Light Photocatalysis describes the various methods of synthesizing different classes of nanostructured materials that are used as photocatalysts for the degradation of organic hazardous dyes under visible light irradiation. The first three chapters include a general introduction, basic principles, mechanisms, and synthesis methods of nanomaterials for visible light photocatalysis. Recent advances in carbon, bismuth series, transition metal oxide and chalcogenides-based nanostructured materials for visible light photocatalysis are discussed. Later chapters describe the role of phosphides, nitrides, and rare earth-based nanostructured-based materials in visible light photocatalysis, as well as the characteristics, synthesis, and fabrication of photocatalysts. The role of doping, composites, defects, different facets, morphology of nanostructured materials and green technology for efficient dye removal under visible-light irradiation are also explored. Other topics covered include large-scale production of nanostructured materials, the challenges in present photocatalytic research, the future scope of nanostructured materials regarding environmental hazard remediation under visible light, and solar light harvesting. This book is a valuable reference to researchers and enables them to learn more about designing advanced nanostructured materials for wastewater treatment and visible-light irradiation. - Covers all the recent developments of nanostructured photocatalytic materials - Provides a clear overview of the mechanism of visible light photocatalysis and the controlled synthesis of nanostructured materials - Assesses the major challenges of creating visible light photocatalysis systems at the nanoscale
Metal Oxide Nanostructures
Author: Daniela Nunes
Publisher: Elsevier
ISBN: 012811505X
Category : Technology & Engineering
Languages : en
Pages : 331
Book Description
Metal Oxide Nanostructures: Synthesis, Properties and Applications covers the theoretical and experimental aspects related to design, synthesis, fabrication, processing, structural, morphological, optical and electronic properties on the topic. In addition, it reviews surface functionalization and hybrid materials, focusing on the advantages of these oxide nanostructures. The book concludes with the current and future prospective applications of these materials. Users will find a complete overview of all the important topics related to oxide nanostructures, from the physics of the materials, to its application. - Delves into hybrid structured metal oxides and their promising use in the next generation of electronic devices - Includes fundamental chapters on synthesis design and the properties of metal oxide nanostructures - Provides an in-depth overview of novel applications, including chromogenics, electronics and energy
Publisher: Elsevier
ISBN: 012811505X
Category : Technology & Engineering
Languages : en
Pages : 331
Book Description
Metal Oxide Nanostructures: Synthesis, Properties and Applications covers the theoretical and experimental aspects related to design, synthesis, fabrication, processing, structural, morphological, optical and electronic properties on the topic. In addition, it reviews surface functionalization and hybrid materials, focusing on the advantages of these oxide nanostructures. The book concludes with the current and future prospective applications of these materials. Users will find a complete overview of all the important topics related to oxide nanostructures, from the physics of the materials, to its application. - Delves into hybrid structured metal oxides and their promising use in the next generation of electronic devices - Includes fundamental chapters on synthesis design and the properties of metal oxide nanostructures - Provides an in-depth overview of novel applications, including chromogenics, electronics and energy
Springer Handbook of Inorganic Photochemistry
Author: Detlef Bahnemann
Publisher: Springer Nature
ISBN: 3030637131
Category : Science
Languages : en
Pages : 1914
Book Description
The handbook comprehensively covers the field of inorganic photochemistry from the fundamentals to the main applications. The first section of the book describes the historical development of inorganic photochemistry, along with the fundamentals related to this multidisciplinary scientific field. The main experimental techniques employed in state-of-art studies are described in detail in the second section followed by a third section including theoretical investigations in the field. In the next three sections, the photophysical and photochemical properties of coordination compounds, supramolecular systems and inorganic semiconductors are summarized by experts on these materials. Finally, the application of photoactive inorganic compounds in key sectors of our society is highlighted. The sections cover applications in bioimaging and sensing, drug delivery and cancer therapy, solar energy conversion to electricity and fuels, organic synthesis, environmental remediation and optoelectronics among others. The chapters provide a concise overview of the main achievements in the recent years and highlight the challenges for future research. This handbook offers a unique compilation for practitioners of inorganic photochemistry in both industry and academia.
Publisher: Springer Nature
ISBN: 3030637131
Category : Science
Languages : en
Pages : 1914
Book Description
The handbook comprehensively covers the field of inorganic photochemistry from the fundamentals to the main applications. The first section of the book describes the historical development of inorganic photochemistry, along with the fundamentals related to this multidisciplinary scientific field. The main experimental techniques employed in state-of-art studies are described in detail in the second section followed by a third section including theoretical investigations in the field. In the next three sections, the photophysical and photochemical properties of coordination compounds, supramolecular systems and inorganic semiconductors are summarized by experts on these materials. Finally, the application of photoactive inorganic compounds in key sectors of our society is highlighted. The sections cover applications in bioimaging and sensing, drug delivery and cancer therapy, solar energy conversion to electricity and fuels, organic synthesis, environmental remediation and optoelectronics among others. The chapters provide a concise overview of the main achievements in the recent years and highlight the challenges for future research. This handbook offers a unique compilation for practitioners of inorganic photochemistry in both industry and academia.
Surface Science of Photocatalysis
Author: Jiaguo Yu
Publisher: Academic Press
ISBN: 0081028911
Category : Technology & Engineering
Languages : en
Pages : 604
Book Description
Surface Science of Photocatalysis, Volume 32, summarizes significant findings on the surface science behind various classic and novel photocatalysts for energy and environmental applications, with special emphasis on important surface/interface processes in photocatalysis, such as interfacial charge transfer, function of co-catalysts, and adsorption over photocatalyst surface. This book timely and systematically reviews the state-of-the-art of the surface science in semiconductor-based photocatalysis, serving as a useful reference book for both new and experienced researchers in this field. - Provides timely reviews on cutting-edge research on surface science and photocatalysts - Comprehensively discusses novel photocatalysts, such as metal oxides, metal sulphides, graphitic carbon nitrides, graphene and metal-organics - Presents important surface/interface processes in photocatalysis, like Z-scheme system and surface heterojunctions - Investigates the function of co-catalysts and the adsorption on photocatalyst surfaces - Edited by world-leading researchers in interface science
Publisher: Academic Press
ISBN: 0081028911
Category : Technology & Engineering
Languages : en
Pages : 604
Book Description
Surface Science of Photocatalysis, Volume 32, summarizes significant findings on the surface science behind various classic and novel photocatalysts for energy and environmental applications, with special emphasis on important surface/interface processes in photocatalysis, such as interfacial charge transfer, function of co-catalysts, and adsorption over photocatalyst surface. This book timely and systematically reviews the state-of-the-art of the surface science in semiconductor-based photocatalysis, serving as a useful reference book for both new and experienced researchers in this field. - Provides timely reviews on cutting-edge research on surface science and photocatalysts - Comprehensively discusses novel photocatalysts, such as metal oxides, metal sulphides, graphitic carbon nitrides, graphene and metal-organics - Presents important surface/interface processes in photocatalysis, like Z-scheme system and surface heterojunctions - Investigates the function of co-catalysts and the adsorption on photocatalyst surfaces - Edited by world-leading researchers in interface science
Photocatalysis for Environmental Remediation and Energy Production
Author: Seema Garg
Publisher: Springer Nature
ISBN: 3031277074
Category : Science
Languages : en
Pages : 483
Book Description
This book explores the modification of various synthesis processes to enhance the photocatalytic activity in varied applications in the fields of environmental remediation and energy production. It outlines the enhancement of photocatalytic activity via alloys synthesis, thin film coatings, electro-spun nanofibers and 3D printed photocatalysts. The book further states the diverse applications of materials for degrading organic pollutants and airborne pathogens, improving indoor air quality and as a potential antimicrobial agent. The application of photocatalysts in green organic synthesis, biomedical field and in hydrogen evolution are also presented in the book. It covers theoretical studies of photocatalytic material and conversion of CO2 to value added chemical feed stocks. The book is of relevance to researchers in academia and industry alike in the fields of material science, environmental science & technology, photocatalytic applications and in energy generation and conversion.
Publisher: Springer Nature
ISBN: 3031277074
Category : Science
Languages : en
Pages : 483
Book Description
This book explores the modification of various synthesis processes to enhance the photocatalytic activity in varied applications in the fields of environmental remediation and energy production. It outlines the enhancement of photocatalytic activity via alloys synthesis, thin film coatings, electro-spun nanofibers and 3D printed photocatalysts. The book further states the diverse applications of materials for degrading organic pollutants and airborne pathogens, improving indoor air quality and as a potential antimicrobial agent. The application of photocatalysts in green organic synthesis, biomedical field and in hydrogen evolution are also presented in the book. It covers theoretical studies of photocatalytic material and conversion of CO2 to value added chemical feed stocks. The book is of relevance to researchers in academia and industry alike in the fields of material science, environmental science & technology, photocatalytic applications and in energy generation and conversion.
Photochemical Water Splitting
Author: Neelu Chouhan
Publisher: CRC Press
ISBN: 1315279630
Category : Science
Languages : en
Pages : 310
Book Description
Cleavage of water to its constituents (i.e., hydrogen and oxygen) for production of hydrogen energy at an industrial scale is one of the "holy grails" of materials science. That can be done by utilizing the renewable energy resource i.e. sunlight and photocatalytic material. The sunlight and water are abundant and free of cost available at this planet. But the development of a stable, efficient and cost-effective photocatalytic material to split water is still a great challenge. To develop the effective materials for photocatalytic water splitting, various type of materials with different sizes and structures from nano to giant have been explored that includes metal oxides, metal chalcogenides, carbides, nitrides, phosphides, and so on. Fundamental concepts and state of art materials for the water splitting are also discussed to understand the phenomenon/mechanism behind the photoelectrochemical water splitting. This book gives a comprehensive overview and description of the manufacturing of photocatalytic materials and devices for water splitting by controlling the chemical composition, particle size, morphology, orientation and aspect ratios of the materials. The real technological breakthroughs in the development of the photoactive materials with considerable efficiency, are well conversed to bring out the practical aspects of the technique and its commercialization.
Publisher: CRC Press
ISBN: 1315279630
Category : Science
Languages : en
Pages : 310
Book Description
Cleavage of water to its constituents (i.e., hydrogen and oxygen) for production of hydrogen energy at an industrial scale is one of the "holy grails" of materials science. That can be done by utilizing the renewable energy resource i.e. sunlight and photocatalytic material. The sunlight and water are abundant and free of cost available at this planet. But the development of a stable, efficient and cost-effective photocatalytic material to split water is still a great challenge. To develop the effective materials for photocatalytic water splitting, various type of materials with different sizes and structures from nano to giant have been explored that includes metal oxides, metal chalcogenides, carbides, nitrides, phosphides, and so on. Fundamental concepts and state of art materials for the water splitting are also discussed to understand the phenomenon/mechanism behind the photoelectrochemical water splitting. This book gives a comprehensive overview and description of the manufacturing of photocatalytic materials and devices for water splitting by controlling the chemical composition, particle size, morphology, orientation and aspect ratios of the materials. The real technological breakthroughs in the development of the photoactive materials with considerable efficiency, are well conversed to bring out the practical aspects of the technique and its commercialization.
Handbook of Nanomaterials Properties
Author: Bharat Bhushan
Publisher: Springer Science & Business Media
ISBN: 3642311075
Category : Technology & Engineering
Languages : en
Pages : 1467
Book Description
Nanomaterials attract tremendous attention in recent researches. Although extensive research has been done in this field it still lacks a comprehensive reference work that presents data on properties of different Nanomaterials. This Handbook of Nanomaterials Properties will be the first single reference work that brings together the various properties with wide breadth and scope.
Publisher: Springer Science & Business Media
ISBN: 3642311075
Category : Technology & Engineering
Languages : en
Pages : 1467
Book Description
Nanomaterials attract tremendous attention in recent researches. Although extensive research has been done in this field it still lacks a comprehensive reference work that presents data on properties of different Nanomaterials. This Handbook of Nanomaterials Properties will be the first single reference work that brings together the various properties with wide breadth and scope.
Metal Oxide Nanoparticles, 2 Volume Set
Author: Oliver Diwald
Publisher: John Wiley & Sons
ISBN: 1119436745
Category : Technology & Engineering
Languages : de
Pages : 903
Book Description
Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.
Publisher: John Wiley & Sons
ISBN: 1119436745
Category : Technology & Engineering
Languages : de
Pages : 903
Book Description
Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.