Author: J-P Antoine
Publisher: Springer
ISBN: 3642051367
Category : Mathematics
Languages : en
Pages : 371
Book Description
Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines.
Partial Inner Product Spaces
Author: J-P Antoine
Publisher: Springer
ISBN: 3642051367
Category : Mathematics
Languages : en
Pages : 371
Book Description
Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines.
Publisher: Springer
ISBN: 3642051367
Category : Mathematics
Languages : en
Pages : 371
Book Description
Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines.
Inner Product Spaces and Applications
Author: T M Rassias
Publisher: CRC Press
ISBN: 9780582317116
Category : Mathematics
Languages : en
Pages : 284
Book Description
In this volume, the contributing authors deal primarily with the interaction among problems of analysis and geometry in the context of inner product spaces. They present new and old characterizations of inner product spaces among normed linear spaces and the use of such spaces in various research problems of pure and applied mathematics. The methods employed are accessible to students familiar with normed linear spaces. Some of the theorems presented are at the same time simple and challenging.
Publisher: CRC Press
ISBN: 9780582317116
Category : Mathematics
Languages : en
Pages : 284
Book Description
In this volume, the contributing authors deal primarily with the interaction among problems of analysis and geometry in the context of inner product spaces. They present new and old characterizations of inner product spaces among normed linear spaces and the use of such spaces in various research problems of pure and applied mathematics. The methods employed are accessible to students familiar with normed linear spaces. Some of the theorems presented are at the same time simple and challenging.
Characterizations of Inner Product Spaces
Author: Amir
Publisher: Birkhäuser
ISBN: 3034854870
Category : Science
Languages : en
Pages : 205
Book Description
Every mathematician working in Banaeh spaee geometry or Approximation theory knows, from his own experienee, that most "natural" geometrie properties may faH to hold in a generalnormed spaee unless the spaee is an inner produet spaee. To reeall the weIl known definitions, this means IIx 11 = *, where is an inner (or: scalar) product on E, Le. a function from ExE to the underlying (real or eomplex) field satisfying: (i) O for x o. (ii) is linear in x. (iii) = (intherealease, thisisjust =
Publisher: Birkhäuser
ISBN: 3034854870
Category : Science
Languages : en
Pages : 205
Book Description
Every mathematician working in Banaeh spaee geometry or Approximation theory knows, from his own experienee, that most "natural" geometrie properties may faH to hold in a generalnormed spaee unless the spaee is an inner produet spaee. To reeall the weIl known definitions, this means IIx 11 = *, where is an inner (or: scalar) product on E, Le. a function from ExE to the underlying (real or eomplex) field satisfying: (i) O for x o. (ii) is linear in x. (iii) = (intherealease, thisisjust =
Inner Product Structures
Author: V.I. Istratescu
Publisher: Springer Science & Business Media
ISBN: 940093713X
Category : Mathematics
Languages : en
Pages : 909
Book Description
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Publisher: Springer Science & Business Media
ISBN: 940093713X
Category : Mathematics
Languages : en
Pages : 909
Book Description
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Linear Algebra Done Right
Author: Sheldon Axler
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276
Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276
Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Spectral Theory in Inner Product Spaces and Applications
Author: Jussi Behrndt
Publisher: Springer Science & Business Media
ISBN: 3764389117
Category : Mathematics
Languages : en
Pages : 261
Book Description
Contains a collection of research papers originating from the 6th Workshop on Operator Theory in Krein Spaces and Operator Polynomials, which was held at the TU Berlin, Germany, December 14 to 17. This work discusses topics such as linear relations, singular perturbations, de Branges spaces, nonnegative matrices, and abstract kinetic equations.
Publisher: Springer Science & Business Media
ISBN: 3764389117
Category : Mathematics
Languages : en
Pages : 261
Book Description
Contains a collection of research papers originating from the 6th Workshop on Operator Theory in Krein Spaces and Operator Polynomials, which was held at the TU Berlin, Germany, December 14 to 17. This work discusses topics such as linear relations, singular perturbations, de Branges spaces, nonnegative matrices, and abstract kinetic equations.
Norm Derivatives and Characterizations of Inner Product Spaces
Author: Claudi Alsina
Publisher: World Scientific
ISBN: 981428727X
Category : Mathematics
Languages : en
Pages : 199
Book Description
1. Introduction. 1.1. Historical notes. 1.2. Normed linear spaces. 1.3. Strictly convex normed linear spaces. 1.4. Inner product spaces. 1.5. Orthogonalities in normed linear spaces -- 2. Norm derivatives. 2.1. Norm derivatives : Definition and basic properties. 2.2. Orthogonality relations based on norm derivatives. 2.3. p'[symbol]-orthogonal transformations. 2.4. On the equivalence of two norm derivatives. 2.5. Norm derivatives and projections in normed linear spaces. 2.6. Norm derivatives and Lagrange's identity in normed linear spaces. 2.7. On some extensions of the norm derivatives. 2.8. p-orthogonal additivity -- 3. Norm derivatives and heights. 3.1. Definition and basic properties. 3.2. Characterizations of inner product spaces involving geometrical properties of a height in a triangle. 3.3. Height functions and classical orthogonalities. 3.4. A new orthogonality relation. 3.5. Orthocenters. 3.6. A characterization of inner product spaces involving an isosceles trapezoid property. 3.7. Functional equations of the height transform -- 4. Perpendicular bisectors in Normed spaces. 4.1. Definitions and basic properties. 4.2. A new orthogonality relation. 4.3. Relations between perpendicular bisectors and classical orthogonalities. 4.4. On the radius of the circumscribed circumference of a triangle. 4.5. Circumcenters in a triangle. 4.6. Euler line in real normed space. 4.7. Functional equation of the perpendicular bisector transform -- 5. Bisectrices in real Normed spaces. 5.1. Bisectrices in real normed spaces. 5.2. A new orthogonality relation. 5.3. Functional equation of the bisectrix transform. 5.4. Generalized bisectrices in strictly convex real normed spaces. 5.5. Incenters and generalized bisectrices -- 6. Areas of triangles in Normed spaces. 6.1. Definition of four areas of triangles. 6.2. Classical properties of the areas and characterizations of inner product spaces. 6.3. Equalities between different area functions. 6.4. The area orthogonality.
Publisher: World Scientific
ISBN: 981428727X
Category : Mathematics
Languages : en
Pages : 199
Book Description
1. Introduction. 1.1. Historical notes. 1.2. Normed linear spaces. 1.3. Strictly convex normed linear spaces. 1.4. Inner product spaces. 1.5. Orthogonalities in normed linear spaces -- 2. Norm derivatives. 2.1. Norm derivatives : Definition and basic properties. 2.2. Orthogonality relations based on norm derivatives. 2.3. p'[symbol]-orthogonal transformations. 2.4. On the equivalence of two norm derivatives. 2.5. Norm derivatives and projections in normed linear spaces. 2.6. Norm derivatives and Lagrange's identity in normed linear spaces. 2.7. On some extensions of the norm derivatives. 2.8. p-orthogonal additivity -- 3. Norm derivatives and heights. 3.1. Definition and basic properties. 3.2. Characterizations of inner product spaces involving geometrical properties of a height in a triangle. 3.3. Height functions and classical orthogonalities. 3.4. A new orthogonality relation. 3.5. Orthocenters. 3.6. A characterization of inner product spaces involving an isosceles trapezoid property. 3.7. Functional equations of the height transform -- 4. Perpendicular bisectors in Normed spaces. 4.1. Definitions and basic properties. 4.2. A new orthogonality relation. 4.3. Relations between perpendicular bisectors and classical orthogonalities. 4.4. On the radius of the circumscribed circumference of a triangle. 4.5. Circumcenters in a triangle. 4.6. Euler line in real normed space. 4.7. Functional equation of the perpendicular bisector transform -- 5. Bisectrices in real Normed spaces. 5.1. Bisectrices in real normed spaces. 5.2. A new orthogonality relation. 5.3. Functional equation of the bisectrix transform. 5.4. Generalized bisectrices in strictly convex real normed spaces. 5.5. Incenters and generalized bisectrices -- 6. Areas of triangles in Normed spaces. 6.1. Definition of four areas of triangles. 6.2. Classical properties of the areas and characterizations of inner product spaces. 6.3. Equalities between different area functions. 6.4. The area orthogonality.
Semi-inner Products and Applications
Author: Sever Silvestru Dragomir
Publisher: Nova Biomedical Books
ISBN:
Category : Mathematics
Languages : en
Pages : 240
Book Description
Semi-inner products, that can be naturally defined in general Banach spaces over the real or complex number field, play an important role in describing the geometric properties of these spaces. This new book dedicates 17 chapters to the study of semi-inner products and its applications. The bibliography at the end of each chapter contains a list of the papers cited in the chapter. The interested reader may find more information on the subject by consulting the list of papers provided at the end of the work. The book is intended for use by both researchers and postgraduate students interested in functional analysis. It also provides helpful tools to mathematicians using functional analysis in other domains such as: linear and non-linear operator theory, optimization theory, game theory or other related fields.
Publisher: Nova Biomedical Books
ISBN:
Category : Mathematics
Languages : en
Pages : 240
Book Description
Semi-inner products, that can be naturally defined in general Banach spaces over the real or complex number field, play an important role in describing the geometric properties of these spaces. This new book dedicates 17 chapters to the study of semi-inner products and its applications. The bibliography at the end of each chapter contains a list of the papers cited in the chapter. The interested reader may find more information on the subject by consulting the list of papers provided at the end of the work. The book is intended for use by both researchers and postgraduate students interested in functional analysis. It also provides helpful tools to mathematicians using functional analysis in other domains such as: linear and non-linear operator theory, optimization theory, game theory or other related fields.
Best Approximation in Inner Product Spaces
Author: Frank R. Deutsch
Publisher: Springer Science & Business Media
ISBN: 1468492985
Category : Mathematics
Languages : en
Pages : 344
Book Description
This is the first systematic study of best approximation theory in inner product spaces and, in particular, in Hilbert space. Geometric considerations play a prominent role in developing and understanding the theory. The only prerequisites for reading the book is some knowledge of advanced calculus and linear algebra.
Publisher: Springer Science & Business Media
ISBN: 1468492985
Category : Mathematics
Languages : en
Pages : 344
Book Description
This is the first systematic study of best approximation theory in inner product spaces and, in particular, in Hilbert space. Geometric considerations play a prominent role in developing and understanding the theory. The only prerequisites for reading the book is some knowledge of advanced calculus and linear algebra.
Indefinite Linear Algebra and Applications
Author: Israel Gohberg
Publisher: Springer Science & Business Media
ISBN: 3764373504
Category : Mathematics
Languages : en
Pages : 364
Book Description
This book covers recent results in linear algebra with indefinite inner product. It includes applications to differential and difference equations with symmetries, matrix polynomials and Riccati equations. These applications are based on linear algebra in spaces with indefinite inner product. The latter forms an independent branch of linear algebra called indefinite linear algebra. This new subject is presented following the principles of a standard linear algebra course.
Publisher: Springer Science & Business Media
ISBN: 3764373504
Category : Mathematics
Languages : en
Pages : 364
Book Description
This book covers recent results in linear algebra with indefinite inner product. It includes applications to differential and difference equations with symmetries, matrix polynomials and Riccati equations. These applications are based on linear algebra in spaces with indefinite inner product. The latter forms an independent branch of linear algebra called indefinite linear algebra. This new subject is presented following the principles of a standard linear algebra course.