Information Theoretic Neural Computation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Information Theoretic Neural Computation PDF full book. Access full book title Information Theoretic Neural Computation by Ryotaro Kamimura. Download full books in PDF and EPUB format.

Information Theoretic Neural Computation

Information Theoretic Neural Computation PDF Author: Ryotaro Kamimura
Publisher: World Scientific
ISBN: 9810240759
Category : Computers
Languages : en
Pages : 219

Book Description
In order to develope new types of information media and technology, it is essential to model complex and flexible information processing in living systems. This book presents a new approach to modeling complex information processing in living systems. Traditional information-theoretic methods in neural networks are unified in one framework, i.e. a-entropy. This new approach will enable information systems such as computers to imitate and simulate human complex behavior and to uncover the deepest secrets of the human mind.

Information Theoretic Neural Computation

Information Theoretic Neural Computation PDF Author: Ryotaro Kamimura
Publisher: World Scientific
ISBN: 9810240759
Category : Computers
Languages : en
Pages : 219

Book Description
In order to develope new types of information media and technology, it is essential to model complex and flexible information processing in living systems. This book presents a new approach to modeling complex information processing in living systems. Traditional information-theoretic methods in neural networks are unified in one framework, i.e. a-entropy. This new approach will enable information systems such as computers to imitate and simulate human complex behavior and to uncover the deepest secrets of the human mind.

An Information-Theoretic Approach to Neural Computing

An Information-Theoretic Approach to Neural Computing PDF Author: Gustavo Deco
Publisher: Springer Science & Business Media
ISBN: 1461240166
Category : Computers
Languages : en
Pages : 265

Book Description
A detailed formulation of neural networks from the information-theoretic viewpoint. The authors show how this perspective provides new insights into the design theory of neural networks. In particular they demonstrate how these methods may be applied to the topics of supervised and unsupervised learning, including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from varied scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this an extremely valuable introduction to this topic.

Introduction To The Theory Of Neural Computation

Introduction To The Theory Of Neural Computation PDF Author: John A. Hertz
Publisher: CRC Press
ISBN: 0429968213
Category : Science
Languages : en
Pages : 352

Book Description
Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.

Information Theoretic Learning

Information Theoretic Learning PDF Author: Jose C. Principe
Publisher: Springer Science & Business Media
ISBN: 1441915702
Category : Computers
Languages : en
Pages : 538

Book Description
This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.

Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms PDF Author: David J. C. MacKay
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694

Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Principles of Neural Information Theory

Principles of Neural Information Theory PDF Author: James V Stone
Publisher:
ISBN: 9780993367922
Category : Computers
Languages : en
Pages : 214

Book Description
In this richly illustrated book, it is shown how Shannon's mathematical theory of information defines absolute limits on neural efficiency; limits which ultimately determine the neuroanatomical microstructure of the eye and brain. Written in an informal style this is an ideal introduction to cutting-edge research in neural information theory.

Neural Computation and Self-organizing Maps

Neural Computation and Self-organizing Maps PDF Author: Helge Ritter
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 328

Book Description


An Introduction to Computational Learning Theory

An Introduction to Computational Learning Theory PDF Author: Michael J. Kearns
Publisher: MIT Press
ISBN: 9780262111935
Category : Computers
Languages : en
Pages : 230

Book Description
Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning. Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs. The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation.

Neural Networks and Analog Computation

Neural Networks and Analog Computation PDF Author: Hava T. Siegelmann
Publisher: Springer Science & Business Media
ISBN: 146120707X
Category : Computers
Languages : en
Pages : 193

Book Description
The theoretical foundations of Neural Networks and Analog Computation conceptualize neural networks as a particular type of computer consisting of multiple assemblies of basic processors interconnected in an intricate structure. Examining these networks under various resource constraints reveals a continuum of computational devices, several of which coincide with well-known classical models. On a mathematical level, the treatment of neural computations enriches the theory of computation but also explicated the computational complexity associated with biological networks, adaptive engineering tools, and related models from the fields of control theory and nonlinear dynamics. The material in this book will be of interest to researchers in a variety of engineering and applied sciences disciplines. In addition, the work may provide the base of a graduate-level seminar in neural networks for computer science students.

Discrete Neural Computation

Discrete Neural Computation PDF Author: Kai-Yeung Siu
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 444

Book Description
Written by the three leading authorities in the field, this book brings together -- in one volume -- the recent developments in discrete neural computation, with a focus on neural networks with discrete inputs and outputs. It integrates a variety of important ideas and analytical techniques, and establishes a theoretical foundation for discrete neural computation. Discusses the basic models for discrete neural computation and the fundamental concepts in computational complexity; establishes efficient designs of threshold circuits for computing various functions; develops techniques for analyzing the computational power of neural models. A reference/text for computer scientists and researchers involved with neural computation and related disciplines.