Information Criteria and Statistical Modeling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Information Criteria and Statistical Modeling PDF full book. Access full book title Information Criteria and Statistical Modeling by Sadanori Konishi. Download full books in PDF and EPUB format.

Information Criteria and Statistical Modeling

Information Criteria and Statistical Modeling PDF Author: Sadanori Konishi
Publisher: Springer Science & Business Media
ISBN: 0387718869
Category : Business & Economics
Languages : en
Pages : 282

Book Description
Statistical modeling is a critical tool in scientific research. This book provides comprehensive explanations of the concepts and philosophy of statistical modeling, together with a wide range of practical and numerical examples. The authors expect this work to be of great value not just to statisticians but also to researchers and practitioners in various fields of research such as information science, computer science, engineering, bioinformatics, economics, marketing and environmental science. It’s a crucial area of study, as statistical models are used to understand phenomena with uncertainty and to determine the structure of complex systems. They’re also used to control such systems, as well as to make reliable predictions in various natural and social science fields.

Information Criteria and Statistical Modeling

Information Criteria and Statistical Modeling PDF Author: Sadanori Konishi
Publisher: Springer Science & Business Media
ISBN: 0387718869
Category : Business & Economics
Languages : en
Pages : 282

Book Description
Statistical modeling is a critical tool in scientific research. This book provides comprehensive explanations of the concepts and philosophy of statistical modeling, together with a wide range of practical and numerical examples. The authors expect this work to be of great value not just to statisticians but also to researchers and practitioners in various fields of research such as information science, computer science, engineering, bioinformatics, economics, marketing and environmental science. It’s a crucial area of study, as statistical models are used to understand phenomena with uncertainty and to determine the structure of complex systems. They’re also used to control such systems, as well as to make reliable predictions in various natural and social science fields.

Information Criteria and Statistical Modeling

Information Criteria and Statistical Modeling PDF Author: Sadanori Konishi
Publisher: Springer Science & Business Media
ISBN: 9780387718873
Category : Mathematics
Languages : en
Pages : 276

Book Description
Statistical modeling is a critical tool in scientific research. This book provides comprehensive explanations of the concepts and philosophy of statistical modeling, together with a wide range of practical and numerical examples. The authors expect this work to be of great value not just to statisticians but also to researchers and practitioners in various fields of research such as information science, computer science, engineering, bioinformatics, economics, marketing and environmental science. It’s a crucial area of study, as statistical models are used to understand phenomena with uncertainty and to determine the structure of complex systems. They’re also used to control such systems, as well as to make reliable predictions in various natural and social science fields.

Statistical Rethinking

Statistical Rethinking PDF Author: Richard McElreath
Publisher: CRC Press
ISBN: 1315362619
Category : Mathematics
Languages : en
Pages : 488

Book Description
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

From Data to Model

From Data to Model PDF Author: Jan C. Willems
Publisher: Springer Science & Business Media
ISBN: 3642750079
Category : Business & Economics
Languages : en
Pages : 254

Book Description
The problem of obtaining dynamical models directly from an observed time-series occurs in many fields of application. There are a number of possible approaches to this problem. In this volume a number of such points of view are exposed: the statistical time series approach, a theory of guaranted performance, and finally a deterministic approximation approach. This volume is an out-growth of a number of get-togethers sponsered by the Systems and Decision Sciences group of the International Institute of Applied Systems Analysis (IIASA) in Laxenburg, Austria. The hospitality and support of this organization is gratefully acknowledged. Jan Willems Groningen, the Netherlands May 1989 TABLE OF CONTENTS Linear System Identification- A Survey page 1 M. Deistler A Tutorial on Hankel-Norm Approximation 26 K. Glover A Deterministic Approach to Approximate Modelling 49 C. Heij and J. C. Willems Identification - a Theory of Guaranteed Estimates 135 A. B. Kurzhanski Statistical Aspects of Model Selection 215 R. Shibata Index 241 Addresses of Authors 246 LINEAR SYSTEM IDENTIFICATION· A SURVEY M. DEISTLER Abstract In this paper we give an introductory survey on the theory of identification of (in general MIMO) linear systems from (discrete) time series data. The main parts are: Structure theory for linear systems, asymptotic properties of maximum likelihood type estimators, estimation of the dynamic specification by methods based on information criteria and finally, extensions and alternative approaches such as identification of unstable systems and errors-in-variables. Keywords Linear systems, parametrization, maximum likelihood estimation, information criteria, errors-in-variables.

Regression and Time Series Model Selection

Regression and Time Series Model Selection PDF Author: Allan D. R. McQuarrie
Publisher: World Scientific
ISBN: 9812385452
Category : Mathematics
Languages : en
Pages : 479

Book Description
This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models.

Forecasting: principles and practice

Forecasting: principles and practice PDF Author: Rob J Hyndman
Publisher: OTexts
ISBN: 0987507117
Category : Business & Economics
Languages : en
Pages : 380

Book Description
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Statistical Foundations of Data Science

Statistical Foundations of Data Science PDF Author: Jianqing Fan
Publisher: CRC Press
ISBN: 0429527616
Category : Mathematics
Languages : en
Pages : 942

Book Description
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

Model Based Inference in the Life Sciences

Model Based Inference in the Life Sciences PDF Author: David R. Anderson
Publisher: Springer Science & Business Media
ISBN: 0387740759
Category : Science
Languages : en
Pages : 203

Book Description
This textbook introduces a science philosophy called "information theoretic" based on Kullback-Leibler information theory. It focuses on a science philosophy based on "multiple working hypotheses" and statistical models to represent them. The text is written for people new to the information-theoretic approaches to statistical inference, whether graduate students, post-docs, or professionals. Readers are however expected to have a background in general statistical principles, regression analysis, and some exposure to likelihood methods. This is not an elementary text as it assumes reasonable competence in modeling and parameter estimation.

Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition PDF Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677

Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Applied Linear Statistical Models

Applied Linear Statistical Models PDF Author: Michael H. Kutner
Publisher: McGraw-Hill/Irwin
ISBN: 9780072386882
Category : Mathematics
Languages : en
Pages : 1396

Book Description
Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.