Influence of Hyporheic Flow and Geomorphology on Temperature of a Large, Gravel-bed River, Clackamas River, Oregon, USA PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Influence of Hyporheic Flow and Geomorphology on Temperature of a Large, Gravel-bed River, Clackamas River, Oregon, USA PDF full book. Access full book title Influence of Hyporheic Flow and Geomorphology on Temperature of a Large, Gravel-bed River, Clackamas River, Oregon, USA by Barbara K. Burkholder. Download full books in PDF and EPUB format.

Influence of Hyporheic Flow and Geomorphology on Temperature of a Large, Gravel-bed River, Clackamas River, Oregon, USA

Influence of Hyporheic Flow and Geomorphology on Temperature of a Large, Gravel-bed River, Clackamas River, Oregon, USA PDF Author: Barbara K. Burkholder
Publisher:
ISBN:
Category : Bars (Geomorphology)
Languages : en
Pages : 358

Book Description
The hyporheic zone influences the thermal regime of rivers, buffering temperature by storing and releasing heat over a range of timescales. We examined the relationship between hyporheic exchange and temperature along a 24-km reach of the lower Clackamas River, a large gravel-bed river in northwestern Oregon (median discharge = 75.7 m3/s; minimum mean monthly discharge = 22.7 m3/s in August 2006). With a simple mixing model, we estimated how much hyporheic exchange cools the river during hot summer months. Hyporheic exchange was primarily identified by temperature anomalies, which are patches of water that demonstrate at least a 1° C temperature difference from the main channel. Forty hyporheic temperature anomalies were identified through field investigations and TIR (Thermal-Infrared-Radiometry) in summer 2006. The location of anomalies was associated with specific geomorphic features, primarily bar channels and bar heads that act as preferential pathways for hyporheic flow. Detailed field characterization and groundwater modeling on three Clackamas gravel bars indicate residence times of hyporheic water can vary from hours to weeks and months. This was largely determined by hydraulic conductivity, which is affected by how recently the gravel bar formed or was reworked. Upscaling of modeled discharges and hydrologic parameters from these bars to the other anomalies on the Clackamas network shows that hyporheic discharge from anomalies comprises a small fraction (“ 1 %) of mainstem discharge, resulting in small river cooling effects (0.012° C). However, the presence of cooler patches of water within rivers can act as thermal refugia for fish and other aquatic organisms, making the creation or enhancement of hyporheic exchange an attractive method in restoring the thermal regime of rivers.

Influence of Hyporheic Flow and Geomorphology on Temperature of a Large, Gravel-bed River, Clackamas River, Oregon, USA

Influence of Hyporheic Flow and Geomorphology on Temperature of a Large, Gravel-bed River, Clackamas River, Oregon, USA PDF Author: Barbara K. Burkholder
Publisher:
ISBN:
Category : Bars (Geomorphology)
Languages : en
Pages : 358

Book Description
The hyporheic zone influences the thermal regime of rivers, buffering temperature by storing and releasing heat over a range of timescales. We examined the relationship between hyporheic exchange and temperature along a 24-km reach of the lower Clackamas River, a large gravel-bed river in northwestern Oregon (median discharge = 75.7 m3/s; minimum mean monthly discharge = 22.7 m3/s in August 2006). With a simple mixing model, we estimated how much hyporheic exchange cools the river during hot summer months. Hyporheic exchange was primarily identified by temperature anomalies, which are patches of water that demonstrate at least a 1° C temperature difference from the main channel. Forty hyporheic temperature anomalies were identified through field investigations and TIR (Thermal-Infrared-Radiometry) in summer 2006. The location of anomalies was associated with specific geomorphic features, primarily bar channels and bar heads that act as preferential pathways for hyporheic flow. Detailed field characterization and groundwater modeling on three Clackamas gravel bars indicate residence times of hyporheic water can vary from hours to weeks and months. This was largely determined by hydraulic conductivity, which is affected by how recently the gravel bar formed or was reworked. Upscaling of modeled discharges and hydrologic parameters from these bars to the other anomalies on the Clackamas network shows that hyporheic discharge from anomalies comprises a small fraction (“ 1 %) of mainstem discharge, resulting in small river cooling effects (0.012° C). However, the presence of cooler patches of water within rivers can act as thermal refugia for fish and other aquatic organisms, making the creation or enhancement of hyporheic exchange an attractive method in restoring the thermal regime of rivers.

Geomorphic setting, aquatic habitat, and water-quality conditions of the Molalla River, Oregon, 2009–10

Geomorphic setting, aquatic habitat, and water-quality conditions of the Molalla River, Oregon, 2009–10 PDF Author: Kurt D. Carpenter
Publisher: U.S. Department of the Interior, U.S. Geological Survey
ISBN:
Category :
Languages : en
Pages : 90

Book Description
This report presents results from a 2009–10 assessment of the lower half of the Molalla River. The report describes the geomorphic setting and processes governing the physical layout of the river channel and evaluates changes in river geometry over the past several decades using analyses of aerial imagery and other quantitative techniques. The peak-flow hydrology in the Molalla River has been characterized by a series of large floods during the 1960s and 1970s, a period of relatively small peak flows from 1975 to 1995, and a relative increase in severity of events in the past 15 years. Although incomplete, the gaging record for the early 20th century showed only modest high flows. The flood chronology since 1960 has affected the geomorphology of the river corridor, principally by increasing the active-channel width. The area affected by channel migration in the late 20th century, however, was reduced by the construction of revetments along the river corridor which acted to contain channel movement. The study area along the Molalla River was divided into six unique geomorphic reaches. The upper-most reach, designated GR6, is a narrow, bedrock-controlled reach with ample shade and large riffles. The next downstream reach, GR5, is also largely bedrock controlled but has a wider flood plain and active channel-migration zone. The longest geomorphic reach, GR4, has a wide channel-migration zone with many strategically placed revetments that work in concert with bounding bedrock to the northeast to suppress overall channel movement. In contrast, GR3 is a wide, active reach that responds more dramatically to flood and non-flood periods than the other geomorphic reaches. The anthropogenically confined GR2, adjacent the City of Canby, has relatively little historical channel movement and relatively few gravel bars. Finally, the farthest downstream reach, GR1, is an actively meandering reach that most closely resembles its pre-development state. Detailed analysis of aerial imagery from 1994, 2000, 2005, and 2009 showed that channel-migration activity and active-channel widths were greater in GR3 than in any other geomorphic reach and were related directly to the timing and magnitude of high flows. Similarly, the revegetation of exposed bars is significant in GR3 and elsewhere when large floods do not occur. A qualitative analysis of older aerial imagery dating back to 1936 showed that the recent channel-migration activity in GR3 is no greater than it was historically. Channel-migration activity in GR2, GR4, and GR5 was reduced relative to historical rates as a consequence of the construction of revetments and encroachment along the river corridor. Analyses of the longitudinal water-surface profile first suggested a possible accumulation of alluvium in GR3, but subsequent analysis of the shape of the longitudinal profile juxtaposed against bedrock outcrops in the river channel showed that the river is largely flowing over a shelf of bedrock and not filling with sediment. Water-quality, benthic algae, and benthic invertebrate conditions were examined during summer low-flow periods to determine the overall health of the river and to provide possible insights into the physical or chemical influences on diatom assemblages. A wetter than normal spring in 2010 resulted in higher-than-normal flows in July and August that may have delayed the algal growing season and limited the accrual of algal biomass in the river. Longitudinal changes in water quality, including downstream increases in water temperature and specific conductance, were observed in the Molalla River during August and September. Such patterns are typical of many rivers receiving inputs from anthropogenic sources in the flood plain, including agricultural and rural residential lands (Milk and Gribble Creek basins) as well as some urban runoff in the lower river. Nutrient concentrations in the Molalla River were generally low at most sampling sites but did increase at the Goods Bridge and Knights Bridge sites, presumably from a greater influence from anthropogenic sources that enter the river from tributaries, agricultural irrigation returns, or groundwater in the lower basin. Nitrate concentrations at Glen Avon and Knights Bridges exceeded their respective reference values for streams in the Cascade Range and Willamette Valley. Although the nitrate-nitrogen concentrations were somewhat elevated, phosphorus, in contrast, is relatively much less abundant in the Molalla River. N:P ratios for soluble, biologically available nitrogen and phosphorus were lower in the upper middle reaches (less than 5), but the absolute concentrations of orthophosphorus (0.010 milligrams per liter or less in July) suggest that attached periphytic algae in the river may be limited by phosphorus concentrations or some other factor, but probably not by nitrogen. The Molalla River has lower phosphorus concentrations than other rivers draining the Cascade Range because the phosphate-rich rocks of the Oregon High Cascades, prevalent in other drainages, are not present in the Molalla River basin, which is wholly contained within the Western Cascade Range geologic province. The 2010 algal growing season was delayed due to an unusually cold and wet spring, which produced streamflows 12–18 percent higher than normal in July and August and could have limited the accrual of periphyton biomass in the river. Nevertheless, a healthy biofilm of diatoms and other types of algae developed in the shallow riffle habitats during July, covering the entire stream channel in some areas. Generally, riffle habitats appeared healthy, with little sediment and low substrate embeddedness (that is, the degree of infilling of fine sediments around gravels and cobbles) was less than 5 percent at all sites except the Knights Bridge site, where embeddedness was about 10 to 25 percent higher. Algal biomass levels in July were moderate, ranging from 30 to 55 mg of chlorophyll-a per square meter, and the high densities of benthic macroinvertebrate grazers in the riffles suggests that the accumulation of algae (biomass levels) may have been limited by these herbivores. In August, however, a benthic bloom of filamentous green algae (Cladophora glomerata) increased algal biomass in the lower river, with nuisance levels at the Knights Bridge site. Higher nutrient concentrations (both nitrate and orthophosphate) combined with fewer invertebrate grazers (mostly snails) likely contributed to the higher biomass at this site. Long filaments of Cladophora also were observed in the area near the Canby drinking-water treatment plant, where in previous years, algae have clogged water intakes during periods of senescence when algae detach from the river bed and enter the intake. In 2010, algal biomass conditions were not as severe and the intakes were not affected. Distinct fluctuations in concentrations of dissolved oxygen and in pH levels from algal photosynthesis were observed at all sites sampled, with the largest diel changes and highest daily maximum values occurring at the two most downstream sites, particularly at Knights Bridge. Although some relatively high pH values were measured (as much as 8.4 units), none of the pH measurements exceeded State of Oregon water-quality standards, even in the afternoon hours on warm sunny days. Dissolved oxygen concentrations at Goods Bridge and Knights Bridge did not meet the 8 milligrams per liter criteria in the early morning hours, but compliance with the standards is only evaluated with 30-day average minimum values, which were not available. Relative to the salmon spawning criteria, for which the data collected during this study applies only to the Glen Avon Bridge site in September, water temperature, pH, and concentrations of dissolved oxygen all met the state standard in effect. Thirty-three species of algae were identified in the Molalla River, including fast growing small diatoms and very large stalked diatoms, filamentous green and blue-greens, and a few planktonic forms of green and blue-green algae that may have washed into the river from an upstream pond. The occurrence of high-biomass forming types of algae in the river, including filamentous greens such as Cladophora and large stalked diatoms such as Cymbella and Gomphoneis, could be a concern for fish populations because of the potential for smothering fish redds or by impacting benthic invertebrate populations that feed fish. Together, most of these algae (and overall algal biomass) are typical of generally high quality waters with little organic pollution, high concentrations of dissolved oxygen, and alkaline pH. The relatively high percentage of eutrophic taxa does, however, suggest some degree of nutrient enrichment in the river, despite the relatively low concentrations observed at most sites. Uptake of dissolved nutrients by algae, and inputs of additional nutrients, complicates interpretations regarding nutrient concentrations in the river, especially because samples were collected during summer growing season. Although the bulk of the diatom species generally were similar among at least the four upstream sampling sites, the multivariate ordination suggests a downstream trend in assemblage structure from the Glen Avon Bridge site to the Highway 213 Bridge. The next downstream site, at Goods Bridge, near the downstream end of the alluvial GR3 reach, however, plotted closer to the most upstream site at Glen Avon Bridge, which indicates a change in assemblage structure. The algal indicator species analysis showed a change in species composition at the Goods Bridge site, including decreases in eutrophic diatoms, increases in the relative abundance of oligotrophic diatoms, and an increase in diatoms sensitive to organic pollution that suggests an improvement in water quality conditions. Although this may be related to the enhanced water exchange into and out of the streambed in the alluvial reach, and such hyporheic activity could work to clean the river of organic compounds and nutrients, small decreases in water quality (lower concentration of dissolved oxygen, and higher conductance and nutrient concentrations) were observed between the Highway 213 and Goods Bridge sites. The multivariate analysis relating the diatom species composition data to the geomorphic and water-quality variables indicated that the presence of local gravel bars, bedrock, exposure to the sun (open canopy), and pH had a significant role in shaping the diatom assemblage structure. Although there was a high percentage of similarity among samples, many of these factors have the potential to affect diatoms and other algae through various interrelated mechanisms that relate to channel mobility and associated effects on light available for algal photosynthesis, for example, and other potential factors. Although only qualitatively addressed for this study, benthic macroinvertebrates, including mayflies, caddisflies, and stoneflies, were abundant in the Molalla River and indicate a high degree of secondary production in the riffles throughout the study reach. Snails, another voracious grazer of algae, also were relatively abundant at the Goods Bridge and Knights Bridge sites. Additionally, large numbers of the large caddisfly larvae Dicosmoecus were observed throughout most of the lower river in a range of depths and habitats. The large densities of these grazers, combined with the moderate level of algal biomass, suggest that invertebrate grazers could have limited the accrual of algae during summer 2010, an assertion that could be evaluated with further study. In northern California’s Eel River, high abundances of Dicosmoecus were detected in summers following winters that lacked bankfull flow, as was the case for the Molalla River in water year 2010. The lack of disturbance might explain the high abundance of these herbivores in the Molalla River. The information from this study can be used to adapt management strategies for the Molalla River and its flood plain. These strategies may assist in developing and maintaining a healthy river environment that includes high-quality water for aquatic life and human consumption.

Groundwater-Surface Water Interactions

Groundwater-Surface Water Interactions PDF Author: Habil. Jörg Lewandowski
Publisher: MDPI
ISBN: 3039289055
Category : Science
Languages : en
Pages : 438

Book Description
Recent years have seen a paradigm shift in our understanding of groundwater–surface water interactions: surface water and aquifers were long considered discrete, separate entities; they are now understood as integral components of a surface–subsurface continuum. This book provides an overview of current research advances and innovative approaches in groundwater–surface water interactions. The 20 research articles and 1 communication cover a wide range of thematic scopes, scales, and experimental and modelling methods across different disciplines (hydrology, aquatic ecology, biogeochemistry, and environmental pollution). The book identifies current knowledge gaps and reveals the challenges in establishing standardized measurement, observation, and assessment approaches. It includes current hot topcis with environmental and societal relevance such as eutrophication, retention of legacy, and emerging pollutants (e.g., pharmaceuticals and microplastics), urban water interfaces, and climate change impacts. The book demonstrates the relevance of processes at groundwater–surface water interfaces for (1) regional water balances and (2) quality and quantity of drinking water resources. As such, this book represents the long-awaited transfer of the above-mentioned paradigm shift in understanding of groundwater–surface water interactions from science to practice.

Treatise on Water Science

Treatise on Water Science PDF Author:
Publisher: Newnes
ISBN: 0444531998
Category : Technology & Engineering
Languages : en
Pages : 2131

Book Description
Water quality and management are of great significance globally, as the demand for clean, potable water far exceeds the availability. Water science research brings together the natural and applied sciences, engineering, chemistry, law and policy, and economics, and the Treatise on Water Science seeks to unite these areas through contributions from a global team of author-experts. The 4-volume set examines topics in depth, with an emphasis on innovative research and technologies for those working in applied areas. Published in partnership with and endorsed by the International Water Association (IWA), demonstrating the authority of the content Editor-in-Chief Peter Wilderer, a Stockholm Water Prize recipient, has assembled a world-class team of volume editors and contributing authors Topics related to water resource management, water quality and supply, and handling of wastewater are treated in depth

Lake and River Restoration

Lake and River Restoration PDF Author: Gang Pan
Publisher: MDPI
ISBN: 3039360426
Category : Science
Languages : en
Pages : 226

Book Description
Eutrophication has become one of the major environmental issues of global concern due to the adverse effects on water quality, public health, and ecosystem sustainability. Fundamental research on the restoration of eutrophic freshwaters, i.e., lakes and rivers, is crucial to supporting further evidence-based practical implementations. The 12 published research papers can be classified into to three major aspects of this topic, into which they provide valuable contributions. Firstly, a background investigation into the migration of nutrients and the characteristics of submerged biota will guide and assist understanding of the mechanisms of future restoration. Secondly, various restoration strategies are studied and evaluated, including control of both external and internal nutrient loading. Thirdly, an evaluation of field sites after restoration treatment is reported in order to support the selection of appropriate restoration approaches. We foresee that the papers will significantly contribute to eutrophication control, natural water sustainability, and ecological restoration.

Ecohydrological Interfaces

Ecohydrological Interfaces PDF Author: Stefan Krause
Publisher: John Wiley & Sons
ISBN: 1119489660
Category : Science
Languages : en
Pages : 437

Book Description
Ecohydrological Interfaces Comprehensive overview of the process dynamics and interactions governing ecohydrological interfaces Summarizing the interdisciplinary investigation of ecohydrological interface functioning, Ecohydrological Interfaces advances the understanding of their dynamics across traditional subject boundaries. It offers a detailed explanation of the underlying mechanisms and process interactions governing ecohydrological interface functioning from the micro scale to the ecosystem and regional scale. The multidisciplinary team of authors integrates and synthesises the current understanding of process dynamics at different ecohydrological interfaces to develop a unifying concept of their ecosystem functions. The work introduces novel experimental and model-based methods for characterizing and quantifying ecohydrological interface processes, taking account of innovative sensing and tracing technologies as well as microbial and molecular biology approaches. Key questions addressed in the book include: Which conditions stimulate the transformative nature of ecohydrological interfaces? How are ecohydrological interfaces organized in space and time? How does interface activity propagate from small to large scales? How do ecohydrological interfaces react to environmental change and what is their role in processes of significant societal value? As a research level text on the functionality and performance of ecohydrological interfaces, Ecohydrological Interfaces is primarily aimed at academics and postgraduate researchers. It is also appropriate for university libraries as further reading on a range of geographical, environmental, biological, and engineering topics.

Land Surface Remote Sensing in Continental Hydrology

Land Surface Remote Sensing in Continental Hydrology PDF Author: Nicolas Baghdadi
Publisher: Elsevier
ISBN: 0081011814
Category : Science
Languages : en
Pages : 504

Book Description
The continental hydrological cycle is one of the least understood components of the climate system. The understanding of the different processes involved is important in the fields of hydrology and meteorology.In this volume the main applications for continental hydrology are presented, including the characterization of the states of continental surfaces (water state, snow cover, etc.) using active and passive remote sensing, monitoring the Antarctic ice sheet and land water surface heights using radar altimetry, the characterization of redistributions of water masses using the GRACE mission, the potential of GNSS-R technology in hydrology, and remote sensing data assimilation in hydrological models.This book, part of a set of six volumes, has been produced by scientists who are internationally renowned in their fields. It is addressed to students (engineers, Masters, PhD) , engineers and scientists, specialists in remote sensing applied to hydrology. Through this pedagogical work, the authors contribute to breaking down the barriers that hinder the use of Earth observation data. Provides clear and concise descriptions of modern remote sensing methods Explores the most current remote sensing techniques with physical aspects of the measurement (theory) and their applications Provides chapters on physical principles, measurement, and data processing for each technique described Describes optical remote sensing technology, including a description of acquisition systems and measurement corrections to be made

Fluvial Remote Sensing for Science and Management

Fluvial Remote Sensing for Science and Management PDF Author: Patrice Carbonneau
Publisher: John Wiley & Sons
ISBN: 1118351525
Category : Technology & Engineering
Languages : en
Pages : 603

Book Description
This book offers a comprehensive overview of progress in the general area of fluvial remote sensing with a specific focus on its potential contribution to river management. The book highlights a range of challenging issues by considering a range of spatial and temporal scales with perspectives from a variety of disciplines. The book starts with an overview of the technical progress leading to new management applications for a range of field contexts and spatial scales. Topics include colour imagery, multi-spectral and hyper-spectral imagery, video, photogrammetry and LiDAR. The book then discusses management applications such as targeted, network scale, planning, land-use change modelling at catchment scales, characterisation of channel reaches (riparian vegetation, geomorphic features) in both spatial and temporal dimensions, fish habitat assessment, flow measurement, monitoring river restoration and maintenance and, the appraisal of human perceptions of riverscapes. Key Features: • A specific focus on management applications in a period of increasing demands on managers to characterize river features and their evolution at different spatial scales • An integration across all scales of imagery with a clear discussion of both ground based and airborne images • Includes a wide-range of environmental problems • Coverage of cutting-edge technology • Contributions from leading researchers in the field

Water for the Environment

Water for the Environment PDF Author: Avril Horne
Publisher: Academic Press
ISBN: 0128039450
Category : Technology & Engineering
Languages : en
Pages : 760

Book Description
Water for the Environment: From Policy and Science to Implementation and Management provides a holistic view of environmental water management, offering clear links across disciplines that allow water managers to face mounting challenges. The book highlights current challenges and potential solutions, helping define the future direction for environmental water management. In addition, it includes a significant review of current literature and state of knowledge, providing a one-stop resource for environmental water managers. Presents a multidisciplinary approach that allows water managers to make connections across related disciplines, such as hydrology, ecology, law, and economics Links science to practice for environmental flow researchers and those that implement and manage environmental water on a daily basis Includes case studies to demonstrate key points and address implementation issues

Development and Application of a Process-based, Basin-scale Stream Temperature Model

Development and Application of a Process-based, Basin-scale Stream Temperature Model PDF Author: Douglas McKinnon Allen
Publisher:
ISBN:
Category :
Languages : en
Pages : 410

Book Description