Author: Virendera K. Srivastava
Publisher: CRC Press
ISBN: 1000105725
Category : Mathematics
Languages : en
Pages : 393
Book Description
This book brings together the scattered literature associated with the seemingly unrelated regression equations (SURE) model used by econometricians and others. It focuses on the theoretical statistical results associated with the SURE model.
Seemingly Unrelated Regression Equations Models
Author: Virendera K. Srivastava
Publisher: CRC Press
ISBN: 1000105725
Category : Mathematics
Languages : en
Pages : 393
Book Description
This book brings together the scattered literature associated with the seemingly unrelated regression equations (SURE) model used by econometricians and others. It focuses on the theoretical statistical results associated with the SURE model.
Publisher: CRC Press
ISBN: 1000105725
Category : Mathematics
Languages : en
Pages : 393
Book Description
This book brings together the scattered literature associated with the seemingly unrelated regression equations (SURE) model used by econometricians and others. It focuses on the theoretical statistical results associated with the SURE model.
Seemingly Unrelated Regression Equations Models
Author: Virendera K. Srivastava
Publisher: CRC Press
ISBN: 9780824776107
Category : Mathematics
Languages : en
Pages : 398
Book Description
The seemingly unrelated regression equations model; The least squares estimator and its variants; Approximate destribution theory for feasible generalized least squares estimators; Exact finite-sample properties of feasible generalized least squares estimators; Iterative estimators; Shrinkage estimators; Autoregressive disturbances; Heteroscedastic disturbances; Constrained error covariance structures; Prior information; Some miscellaneous topics.
Publisher: CRC Press
ISBN: 9780824776107
Category : Mathematics
Languages : en
Pages : 398
Book Description
The seemingly unrelated regression equations model; The least squares estimator and its variants; Approximate destribution theory for feasible generalized least squares estimators; Exact finite-sample properties of feasible generalized least squares estimators; Iterative estimators; Shrinkage estimators; Autoregressive disturbances; Heteroscedastic disturbances; Constrained error covariance structures; Prior information; Some miscellaneous topics.
Seemingly Unrelated Regression Equations Models
Author: Virendera K. Srivastava
Publisher: CRC Press
ISBN: 1000148939
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book brings together the scattered literature associated with the seemingly unrelated regression equations (SURE) model used by econometricians and others. It focuses on the theoretical statistical results associated with the SURE model.
Publisher: CRC Press
ISBN: 1000148939
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book brings together the scattered literature associated with the seemingly unrelated regression equations (SURE) model used by econometricians and others. It focuses on the theoretical statistical results associated with the SURE model.
Econometrics
Author: Badi Hani Baltagi
Publisher: Springer Science & Business Media
ISBN: 9783540435013
Category : Business & Economics
Languages : en
Pages : 426
Book Description
As well as specification testing, Gauss-Newton regressions and regression diagnostics. In addition, the book features a set of empirical illustrations that demonstrate some of the basic results. The empirical exercises are solved using several econometric software packages.
Publisher: Springer Science & Business Media
ISBN: 9783540435013
Category : Business & Economics
Languages : en
Pages : 426
Book Description
As well as specification testing, Gauss-Newton regressions and regression diagnostics. In addition, the book features a set of empirical illustrations that demonstrate some of the basic results. The empirical exercises are solved using several econometric software packages.
Econometric Analysis of Cross Section and Panel Data, second edition
Author: Jeffrey M. Wooldridge
Publisher: MIT Press
ISBN: 0262232588
Category : Business & Economics
Languages : en
Pages : 1095
Book Description
The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
Publisher: MIT Press
ISBN: 0262232588
Category : Business & Economics
Languages : en
Pages : 1095
Book Description
The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
Dynamic Linear Models with R
Author: Giovanni Petris
Publisher: Springer Science & Business Media
ISBN: 0387772383
Category : Mathematics
Languages : en
Pages : 258
Book Description
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.
Publisher: Springer Science & Business Media
ISBN: 0387772383
Category : Mathematics
Languages : en
Pages : 258
Book Description
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.
Multiple Regression and Beyond
Author: Timothy Z. Keith
Publisher: Routledge
ISBN: 1351667939
Category : Education
Languages : en
Pages : 640
Book Description
Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources
Publisher: Routledge
ISBN: 1351667939
Category : Education
Languages : en
Pages : 640
Book Description
Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources
Linear Models
Author: Calyampudi R. Rao
Publisher: Springer Science & Business Media
ISBN: 0387227520
Category : Mathematics
Languages : en
Pages : 439
Book Description
An up-to-date account of the theory and applications of linear models, for use as a textbook in statistics at graduate level as well as an accompanying text for other courses in which linear models play a part. The authors present a unified theory of inference from linear models with minimal assumptions, not only through least squares theory, but also using alternative methods of estimation and testing based on convex loss functions and general estimating equations. Highlights include: - a special emphasis on sensitivity analysis and model selection; - a chapter devoted to the analysis of categorical data based on logic, loglinear, and logistic regression models; - a chapter devoted to incomplete data sets; - an extensive appendix on matrix theory; - a chapter devoted to the analysis of categorical data based on a unified presentation of generalized linear models including GEE-methods for correlated response; - a chapter devoted to incomplete data sets including regression diagnostics to identify Non-MCAR-processes The material covered is thus invaluable not only to graduates, but also to researchers and consultants in statistics.
Publisher: Springer Science & Business Media
ISBN: 0387227520
Category : Mathematics
Languages : en
Pages : 439
Book Description
An up-to-date account of the theory and applications of linear models, for use as a textbook in statistics at graduate level as well as an accompanying text for other courses in which linear models play a part. The authors present a unified theory of inference from linear models with minimal assumptions, not only through least squares theory, but also using alternative methods of estimation and testing based on convex loss functions and general estimating equations. Highlights include: - a special emphasis on sensitivity analysis and model selection; - a chapter devoted to the analysis of categorical data based on logic, loglinear, and logistic regression models; - a chapter devoted to incomplete data sets; - an extensive appendix on matrix theory; - a chapter devoted to the analysis of categorical data based on a unified presentation of generalized linear models including GEE-methods for correlated response; - a chapter devoted to incomplete data sets including regression diagnostics to identify Non-MCAR-processes The material covered is thus invaluable not only to graduates, but also to researchers and consultants in statistics.
Computational Methods in Decision-Making, Economics and Finance
Author: Erricos John Kontoghiorghes
Publisher: Springer Science & Business Media
ISBN: 1475736134
Category : Business & Economics
Languages : en
Pages : 626
Book Description
Computing has become essential for the modeling, analysis, and optimization of systems. This book is devoted to algorithms, computational analysis, and decision models. The chapters are organized in two parts: optimization models of decisions and models of pricing and equilibria.
Publisher: Springer Science & Business Media
ISBN: 1475736134
Category : Business & Economics
Languages : en
Pages : 626
Book Description
Computing has become essential for the modeling, analysis, and optimization of systems. This book is devoted to algorithms, computational analysis, and decision models. The chapters are organized in two parts: optimization models of decisions and models of pricing and equilibria.
Visualizing Statistical Models And Concepts
Author: R.W. Farebrother
Publisher: CRC Press
ISBN: 0824744608
Category : Mathematics
Languages : en
Pages : 267
Book Description
An examination of classic algorithms, geometric diagrams and mechanical principles for enhanced visualization of statistical estimation procedures and mathematical concepts in physics, engineering and computer programming.
Publisher: CRC Press
ISBN: 0824744608
Category : Mathematics
Languages : en
Pages : 267
Book Description
An examination of classic algorithms, geometric diagrams and mechanical principles for enhanced visualization of statistical estimation procedures and mathematical concepts in physics, engineering and computer programming.