INFERENCE AND INVESTIGATION OF MARINE MICROBIAL COMMUNITY STRUCTURES IN THE GLOBAL OCEANS. PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download INFERENCE AND INVESTIGATION OF MARINE MICROBIAL COMMUNITY STRUCTURES IN THE GLOBAL OCEANS. PDF full book. Access full book title INFERENCE AND INVESTIGATION OF MARINE MICROBIAL COMMUNITY STRUCTURES IN THE GLOBAL OCEANS. by Rana Omer Bashwih. Download full books in PDF and EPUB format.

INFERENCE AND INVESTIGATION OF MARINE MICROBIAL COMMUNITY STRUCTURES IN THE GLOBAL OCEANS.

INFERENCE AND INVESTIGATION OF MARINE MICROBIAL COMMUNITY STRUCTURES IN THE GLOBAL OCEANS. PDF Author: Rana Omer Bashwih
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Marine microbial communities are complex, and represent a serious analytical challenge. The Bayesian model for inference of microbial community structure (BioMiCo) was used to characterize microbial populations using 16S rRNA within polar, tropical, and temperate environmental zones. Global-scale and local analyses were performed on 356 microbial samples and 72853 OTUs within the ICOMM database. Global analysis showed that polar and tropical zones had distinct community structures with high predictive value and little seasonal variation, although seasonal variation was noticeable in the temperate zone. Local analysis on polar communities demonstrated that there were distinct community structures for the Arctic and Antarctic zones. Within the North Atlantic, temporal heterogeneity differed locally, and this impeded the predictive value of models for the entire North Atlantic. Training a model on a single, well-sampled, North Atlantic site, L4 in the English Channel, substantially improved the predictive value of the model. Finally, the model for the L4 site had predictive value for other English Channel sites, but not for more distant sites within the western and eastern North Atlantic. This result appears to be due to differences among North Atlantic sites in the timing of their seasonal community transitions, and because most other sites have not been nearly as well sampled as the L4 site. The only other well-sampled site in the North Atlantic (Bedford Basin) also exhibits regular seasonal transitiona from year to year. Taken together, these results suggest that environmental changes are the primary drivers of marine biogeographic patterns within the North Atlantic. Four methodological investigations were applied to Arctic and Antarctic samples, and to the samples from L4 station in the English Channel, for the purpose of exploring the impact of how users might choose to make inferences using BioMiCo. The first was an exploration of different ways of defining the predominant OTUs within an assemblage. The size of the assemblage was very sensitive to the method. I recommend defining predominant OTUs as those having >0.01 posterior probability, as this was the most conservative. The second was an exploration of the impact of "burn-in". As expected, increasing burin-in yielded more stable assemblages; however, the burn-in did not need to exceed 1000 iterations. The third was an exploration the effect of training and testing design on prediction of Arctic and Antarctic samples. The results showed that better predictions were obtained from larger training sets of data. However, training on more than 2/3 of the data did not generate significant improvement. Thus, designs such as leave-one-out cross validation can be reserved for cases where the total sample size is very small. Otherwise, uses should run several replicates on data randomly divided into 2/3 training sets and 1/3 test sets. The fourth explored the effect of pre-specifying different numbers of assemblages (the value of L within the model). The results showed that running 25 communities was sufficient. In conclusion, the choices that users make when running the MCMC can impact their results, but, the approach is robust and good results can be obtained with just L=25 if the training data is of a sufficient size, and if a sufficient amount of burn-in is discarded.

INFERENCE AND INVESTIGATION OF MARINE MICROBIAL COMMUNITY STRUCTURES IN THE GLOBAL OCEANS.

INFERENCE AND INVESTIGATION OF MARINE MICROBIAL COMMUNITY STRUCTURES IN THE GLOBAL OCEANS. PDF Author: Rana Omer Bashwih
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Marine microbial communities are complex, and represent a serious analytical challenge. The Bayesian model for inference of microbial community structure (BioMiCo) was used to characterize microbial populations using 16S rRNA within polar, tropical, and temperate environmental zones. Global-scale and local analyses were performed on 356 microbial samples and 72853 OTUs within the ICOMM database. Global analysis showed that polar and tropical zones had distinct community structures with high predictive value and little seasonal variation, although seasonal variation was noticeable in the temperate zone. Local analysis on polar communities demonstrated that there were distinct community structures for the Arctic and Antarctic zones. Within the North Atlantic, temporal heterogeneity differed locally, and this impeded the predictive value of models for the entire North Atlantic. Training a model on a single, well-sampled, North Atlantic site, L4 in the English Channel, substantially improved the predictive value of the model. Finally, the model for the L4 site had predictive value for other English Channel sites, but not for more distant sites within the western and eastern North Atlantic. This result appears to be due to differences among North Atlantic sites in the timing of their seasonal community transitions, and because most other sites have not been nearly as well sampled as the L4 site. The only other well-sampled site in the North Atlantic (Bedford Basin) also exhibits regular seasonal transitiona from year to year. Taken together, these results suggest that environmental changes are the primary drivers of marine biogeographic patterns within the North Atlantic. Four methodological investigations were applied to Arctic and Antarctic samples, and to the samples from L4 station in the English Channel, for the purpose of exploring the impact of how users might choose to make inferences using BioMiCo. The first was an exploration of different ways of defining the predominant OTUs within an assemblage. The size of the assemblage was very sensitive to the method. I recommend defining predominant OTUs as those having >0.01 posterior probability, as this was the most conservative. The second was an exploration of the impact of "burn-in". As expected, increasing burin-in yielded more stable assemblages; however, the burn-in did not need to exceed 1000 iterations. The third was an exploration the effect of training and testing design on prediction of Arctic and Antarctic samples. The results showed that better predictions were obtained from larger training sets of data. However, training on more than 2/3 of the data did not generate significant improvement. Thus, designs such as leave-one-out cross validation can be reserved for cases where the total sample size is very small. Otherwise, uses should run several replicates on data randomly divided into 2/3 training sets and 1/3 test sets. The fourth explored the effect of pre-specifying different numbers of assemblages (the value of L within the model). The results showed that running 25 communities was sufficient. In conclusion, the choices that users make when running the MCMC can impact their results, but, the approach is robust and good results can be obtained with just L=25 if the training data is of a sufficient size, and if a sufficient amount of burn-in is discarded.

Investigating Marine Microbial Metabolism and Diversity of Arctic Ecosystems

Investigating Marine Microbial Metabolism and Diversity of Arctic Ecosystems PDF Author: David Colatriano
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The world's oceans are essential for sustaining life on Earth and harbour a vast diversity of organisms. Marine microbes play crucial roles in global biogeochemical cycling and are at the base of marine food webs. Due to the technical difficulties associated with sampling northern marine systems, relatively little is known about the microbial community composition and metabolism of these ecosystems. In this thesis work, the community composition and metabolism of northern marine ecosystems, including the Saint Lawrence Estuary, North Water and Canada Basin were described using meta-omic techniques. In the Saint Lawrence Estuary, differences in microbial community structure, metabolic lifestyles and carbon and nitrogen processing pathways were observed between the surface and deep waters. In the North Water, two distinct microbial communities with different taxonomic compositions and differing nutrient acquisition and resource allocation strategies were identified on either side of the polar mixed layer, and a third distinct community was described in the bottom waters. Functional and taxonomic analyses of the North Water polar mixed layer communities suggest a microbial community more typically associated with waters that undergo pulses of primary production on the Canadian side, while the community on the Greenland side was more typical of waters associated with a more steady level of primary production. In the Canada Basin, metagenomics was used to construct 360 Arctic Ocean metagenome assembled genomes. The analysis of six Chloroflexi MAGs revealed their potential for terrestrial derived aromatic compound degradation and that this metabolic capacity was acquired, at least in part, by lateral gene transfer from terrestrial organisms. To facilitate the meta-omic analyses performed in this thesis, a novel method to isolate microbial community DNA and proteins from the same environmental sample preserved in RNAlater was also developed. This thesis not only describes the microbial community composition and metabolism of northern marine systems over a broad geographic range, but also adds to the growing metagenomic and metaproteomic resource-base that can be used to develop and test hypotheses about northern marine microbial systems. Additionally, this work has implications for our understanding of how climate change may affect northern marine ecosystems.

The Responses of Marine Microorganisms, Communities and Ecofunctions to Environmental Gradients

The Responses of Marine Microorganisms, Communities and Ecofunctions to Environmental Gradients PDF Author: Stefan M. Sievert
Publisher: Frontiers Media SA
ISBN: 2889458075
Category :
Languages : en
Pages : 295

Book Description
Marine environments are fluid. Microorganisms living in the ocean experience diverse environmental changes over wide spatiotemporal scales. For microorganisms and their communities to survive and function in the ocean, they need to have the capacity to sense, respond to, adapt to and/or withstand periodic and sporadic environmental changes. This eBook collates a variety of recent research reports and theoretical discussions on the ecoenergetic strategies, community structure, biogeochemical and ecosystem functions as well as regulatory processes and mechanisms that marine microorganisms employ in response to environmental gradients and variations.

Recent Advances in Geomicrobiology of the Ocean Crust

Recent Advances in Geomicrobiology of the Ocean Crust PDF Author: Beth N. Orcutt
Publisher: Frontiers Media SA
ISBN: 2889452832
Category :
Languages : en
Pages : 328

Book Description
Igneous oceanic crust is one of the largest potential habitats for life on earth, and microbial activity supported by rock-water-microbe reactions in this environment can impact global biogeochemical cycles. However, our understanding of the microbiology of this system, especially the subsurface “deep biosphere” component of it, has traditionally been limited by sample availability and quality. Over the past decade, several major international programs (such as the Center for Dark Energy Biosphere Investigations, the current International Ocean Discovery Program and its predecessor Integrated Ocean Drilling Program, and the Deep Carbon Observatory) have focused on advancing our understanding of life in this cryptic, yet globally relevant, biosphere. Additionally, many field and laboratory research programs are examining hydrothermal vent systems –a seafloor expression of seawater that has been thermally and chemically altered in subseafloor crust – and the microbial communities supported by these mineral-rich fluids. The Frontiers in Microbiology 3 September 2017 | Recent Advances in Geomicrobiology of the Ocean Crust papers in this special issue bring together recent discoveries of microbial presence, diversity and activity in these dynamic ocean environments. Cumulatively, the articles in this special issue serve as a tribute to the late Dr. Katrina J. Edwards, who was a pioneer and profound champion of studying microbes that “rust the crust”. This special issue volume serves as a foundation for the continued exploration of the subsurface ocean crust deep biosphere.

Drivers of Variability in the Structure and Function of Marine Microbial Communities

Drivers of Variability in the Structure and Function of Marine Microbial Communities PDF Author: Nicholas Bock
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
By validating the predictions of a gene-based model of algal trophic modes, the results from these experiments point toward the potential widespread occurrence of phagomixotrophy amongst green algae, while highlighting potential sources of bias in field and laboratory studies of bacterivory. With global climate change expected to produce rapid changes in ocean circulation and biogeochemistry, the urgency of understanding the role of marine microbes in global biogeochemical cycling has never been greater. This dissertation represents an advance in this larger goal, providing an expanded framework for the broad distribution of microbial communities in addition to novel insight into the environmental and physiological drivers of microbial community structure from the global to cellular scale.

The Marine Microbiome

The Marine Microbiome PDF Author: Lucas J. Stal
Publisher: Springer
ISBN: 3319330004
Category : Science
Languages : en
Pages : 501

Book Description
This book describes the state-of-the-art concerning the ‘marine microbiome’ and its uses in biotechnology. The first part discusses the diversity and ecology of marine microorganisms and viruses, including all three domains of life: Bacteria, Archaea, and Eukarya. It discusses whether marine microorganisms exist and, if so, why they might be unique. The second part presents selected marine habitats, their inhabitants and how they influence biogeochemical cycles, while the third discusses the utilization of marine microbial resources, including legal aspects, dissemination, and public awareness. The marine microbiome is the total of microorganisms and viruses in the ocean and seas and in any connected environment, including the seafloor and marine animals and plants. The diversity of microbial life remains unquantified and largely unknown, and could represent a hidden treasure for human society. Accordingly, this book is also intended to connect academics and industry, providing essential information for microbiologists from both fields.

The Ocean and Cryosphere in a Changing Climate

The Ocean and Cryosphere in a Changing Climate PDF Author: Intergovernmental Panel on Climate Change (IPCC)
Publisher: Cambridge University Press
ISBN: 9781009157971
Category : Science
Languages : en
Pages : 755

Book Description
The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.

Environmental Bioenergetics

Environmental Bioenergetics PDF Author: Anke Marianne Herrmann
Publisher: Frontiers Media SA
ISBN: 288963308X
Category :
Languages : en
Pages : 190

Book Description


Temporal Bacterial Community Dynamics in the Coastal Northwest Atlantic Ocean

Temporal Bacterial Community Dynamics in the Coastal Northwest Atlantic Ocean PDF Author: Heba El-Swais
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Advances in Biotechnology

Advances in Biotechnology PDF Author: Indu Ravi
Publisher: Springer Science & Business Media
ISBN: 8132215540
Category : Science
Languages : en
Pages : 264

Book Description
The book “Advances in Biotechnology” is about recent advances in some of the important fields that are ongoing in certain biotechnological applications. Biotechnology has been quite helpful in keeping pace with the demands of every increasing human population and in improving the quality of human life. Major biotechnological achievements associated with human welfare have been from the fields like genetic engineering; transgenic plants and animals; genomics, proteomics, monoclonal antibodies for the diagnosis of disease, gene therapy etc. Fourteen authoritative chapters written by experts having experience in academics and research on current developments and future trends in biotechnology have been empathized. The book provides a detailed account of various methodologies used in biotechnology i.e. High capacity vectors, DNA sequencing dealing with next generation sequencing, Molecular markers, DNA microarray technology, as well as Proteomics that have revolutionized biotechnology with a wide array of applications. The book not only presents a well-founded explanation of the topics but also aims to present up-to-date reviews of current research efforts, some thoughtful discussions on the potential benefits and risks involved in producing biotechnological products and the challenges of bringing such products to market. It will prove to be an excellent reference work for both academicians and researchers, indicating new starting points to young researchers for new projects in the field. The book is intended for biotechnologist, biologist, researchers, teachers and students of Biosciences and Biotechnology.