Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter PDF full book. Access full book title Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter by Paul Davis. Download full books in PDF and EPUB format.

Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter

Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter PDF Author: Paul Davis
Publisher:
ISBN:
Category :
Languages : en
Pages : 220

Book Description
In this work we demonstrate spectrally resolved x-ray scattering from electron-plasma waves in shock-compressed deuterium and proton-heated matter. Because the spectral signature of inelastic x-ray scattering is strongly dependent on the free electron density of the system, it is used to infer ionization in dynamically heated samples. Using 2-6 ns, 500 J laser pulses from LLNL's Janus laser, we shocked liquid deuterium to pressures approaching 50 GPa, reaching compressions of 4 times liquid density. A second laser produced intense 2 keV x-rays. By collecting and spectrally dispersing forward scattered photons at 45 degrees, the onset of ionization was detected at compressions of about 3 times in the form of plasmon oscillations. Backscattered x-rays bolstered this observation by measuring the free electron distribution through Compton scattering. Comparison with simulations shows very close agreement between the pressure dependence of ionization and molecular dissociation in dynamically compressed deuterium. In a second set of experiments, a 10 ps, 200 J Titan laser pulse was split into two beams. One created a stream of MeV protons to heat samples of boron and boron-nitride and the other pumped 4.5 keV K-alpha radiation in a titanium foil to probe the hot target. We observed scattered x-rays 300 ps after heating, noting a strong difference in average ionization between the two target materials at temperatures of 16 eV and very similar mass densities. Comparison with electron structure calculations suggests that this difference is due to a persistence of long-range ion structure in BN resulting in high-temperature band structure. These results underscore the importance of understanding the complex electron structure of materials even at electron-volt temperatures and gigapascal pressures. Our results provide new data to guide the theoretical modeling of warm, dense matter important to understanding giant planets and inertial fusion targets.

Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter

Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter PDF Author: Paul Davis
Publisher:
ISBN:
Category :
Languages : en
Pages : 220

Book Description
In this work we demonstrate spectrally resolved x-ray scattering from electron-plasma waves in shock-compressed deuterium and proton-heated matter. Because the spectral signature of inelastic x-ray scattering is strongly dependent on the free electron density of the system, it is used to infer ionization in dynamically heated samples. Using 2-6 ns, 500 J laser pulses from LLNL's Janus laser, we shocked liquid deuterium to pressures approaching 50 GPa, reaching compressions of 4 times liquid density. A second laser produced intense 2 keV x-rays. By collecting and spectrally dispersing forward scattered photons at 45 degrees, the onset of ionization was detected at compressions of about 3 times in the form of plasmon oscillations. Backscattered x-rays bolstered this observation by measuring the free electron distribution through Compton scattering. Comparison with simulations shows very close agreement between the pressure dependence of ionization and molecular dissociation in dynamically compressed deuterium. In a second set of experiments, a 10 ps, 200 J Titan laser pulse was split into two beams. One created a stream of MeV protons to heat samples of boron and boron-nitride and the other pumped 4.5 keV K-alpha radiation in a titanium foil to probe the hot target. We observed scattered x-rays 300 ps after heating, noting a strong difference in average ionization between the two target materials at temperatures of 16 eV and very similar mass densities. Comparison with electron structure calculations suggests that this difference is due to a persistence of long-range ion structure in BN resulting in high-temperature band structure. These results underscore the importance of understanding the complex electron structure of materials even at electron-volt temperatures and gigapascal pressures. Our results provide new data to guide the theoretical modeling of warm, dense matter important to understanding giant planets and inertial fusion targets.

Using Collective X-ray Thomson Scattering to Measure Temperature and Density of Warm Dense Matter

Using Collective X-ray Thomson Scattering to Measure Temperature and Density of Warm Dense Matter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Book Description
Collective x-ray Thomson scattering allows measuring plasmons, i.e electron plasma oscillations (Langmuir waves). This is manifest in the appearance of spectrally up- and down-shifted spectral features in addition to the Rayleigh signal. The ratio of the up- and down-shifted signals is directly related to detailed balance, allowing to determine the plasma temperature from first principles. The spectral shift of the plasmon signals is sensitive to temperature and electron density. We discuss the experimental considerations that have to be fulfilled to observe plasmon signals with x-ray Thomson scattering. As an example, we describe an experiment that used the Cl Ly-[alpha] x-ray line at 2.96 keV to measure collective Thomson scattering from solid beryllium, isochorically heated to 18 eV. Since temperature measurement based on detailed balance is based on first principles, this method is important to validate models that, for example, calculate the static ion-ion structure factor S{sub ii}(k).

X-ray Scattering from Warm Dense Matter

X-ray Scattering from Warm Dense Matter PDF Author: María Elena García Saiz
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Average-Atom Model for X-ray Scattering from Warm Dense Matter

Average-Atom Model for X-ray Scattering from Warm Dense Matter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 24

Book Description


X-ray Scattering from Warm Dense Matter

X-ray Scattering from Warm Dense Matter PDF Author: Steven Jonathan White
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


X-ray Thomson Scattering Measurements of Warm Dense Matter

X-ray Thomson Scattering Measurements of Warm Dense Matter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 103

Book Description


Predictions of X-ray Scattering Spectra in Warm Dense Matter

Predictions of X-ray Scattering Spectra in Warm Dense Matter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Theory of X-ray Thomson Scattering in Warm Dense Matter

Theory of X-ray Thomson Scattering in Warm Dense Matter PDF Author: Kathrin Wünsch
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This thesis presents the theoretical framework required to apply spectrally resolved x-ray Thomson scattering (XRTS) as a diagnostic method for warm dense matter. In particular, the theory is generalised to allow for the description of systems with multiple ion species where all mutual correlations are taken into account within the new approach. Supplemented with the theory presented, XRTS is now a promising diagnostics for high-energy-density matter containing different chemical elements or mixtures of different materials. The signal measured at XRTS contains the unshifted Rayleigh peak and frequency-shifted features. The first is related to elastic scattering from electrons co-moving with the ions whilst the second occurs due to scattering from free electrons and excitation/ionisation events. The focus of this thesis lies on the elastic scattering feature which requires the ion structure and the electron density around the ion as input for the theoretical modelling. The ion structure is obtained from quantum simulations (DFT-MD) and classical hypernetted-chain (HNC) equations. The analysis of the DTF-MD simulation data reveals that partial ionisation yields strong modifications of the ion-ion interactions. Similar effects are found for the form of the electron screening cloud around an ion. On the basis of the newly developed theory and structural models, multicomponent effects on the XRTS signal are studied. It is shown that the Rayleigh feature is very sensitive to the ratio of the elements in the scattering volume and their mutual correlations. These results indicate that XRTS is well-suited to probe the properties of complex materials and the process of mixing in the WDM regime. The advanced theories are finally applied to experimental spectra. The procedure allows for both extracting the basic plasma parameters and assessing the quality of the theoretical models applied. Comparisons with several experiments demonstrated that the non-collective regime (large scattering angle) is reasonably well understood whereas the collective regime (small scattering angle/long wavelength limit) still holds challenges. The collective regime is problematic as here strong correlations and screening are highly relevant and, thus, a yet unknown description for fully coupled quantum systems needs to be applied.

X-Ray Scattering From Warm Dense Matter

X-Ray Scattering From Warm Dense Matter PDF Author: M. E. Garcia Saiz
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Frontiers and Challenges in Warm Dense Matter

Frontiers and Challenges in Warm Dense Matter PDF Author: Frank Graziani
Publisher: Springer Science & Business
ISBN: 3319049127
Category : Computers
Languages : en
Pages : 294

Book Description
Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.