Inductors in High-performance Silicon Radio Frequency Integrated Circuits PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Inductors in High-performance Silicon Radio Frequency Integrated Circuits PDF full book. Access full book title Inductors in High-performance Silicon Radio Frequency Integrated Circuits by Richard D. Lutz. Download full books in PDF and EPUB format.

Inductors in High-performance Silicon Radio Frequency Integrated Circuits

Inductors in High-performance Silicon Radio Frequency Integrated Circuits PDF Author: Richard D. Lutz
Publisher:
ISBN:
Category : Electric inductors
Languages : en
Pages : 310

Book Description
Spiral inductors are a key component of mixed-signal and analog integrated circuits (IC's). Such circuits are often fabricated using silicon-based technology, owing to the inherent low-cost and high volume production aspects. However, semiconducting substrate materials such as silicon can have adverse effects on spiral inductor performance due to the lossy nature of the material. Since the operating requirements of many high performance IC's demand reactive components that have high Quality Factor's (Q's), and are thus low loss devices, the need for accurate modeling of such structures over lossy substrate media is key to successful circuit design. The Q's of commonly available off-chip inductors are in the range of 50- 100 for frequencies ranging up to a few gigahertz. Since off-chip inductors must be connected through package pins, solder bumps, etc., which all contribute additional loss and thus lower the apparent Q of an external device, the typical on-chip Q requirement for a given RFIC design is generally lower than that for an off-chip spiral solution. However, a spiral inductor that was designed and fabricated originally in a low loss technology such as thin-film alumina may have substantially worse performance in regard to Q if it is used in a silicon-based technology, owing to the conductive substrate. For this reason, it is imperative that semiconducting substrate effects be accurately accounted for by any modeling effort for monolithic spirals in RFICs. This thesis presents a complete modeling solution for both single and multi-level spiral inductors over lossy silicon substrates, along with design considerations and methods for mitigation of the undesirable performance effects of semiconducting substrates. The modeling solution is based on Spectral Domain Approach (SDA) solutions for frequency dependent complex capacitive (i.e. both capacitance and conductance) parasitic elements combined with a quasi-magnetostatic field solution for calculation of the frequency dependent complex inductive (i.e. both inductance and resistance) terms. The effects of geometry and process variations are considered as well as the incorporation of Patterned Ground Shields (PGS) for the purpose of Q enhancement. Proposals for future extensions of this work are discussed in the concluding chapter.

Inductors in High-performance Silicon Radio Frequency Integrated Circuits

Inductors in High-performance Silicon Radio Frequency Integrated Circuits PDF Author: Richard D. Lutz
Publisher:
ISBN:
Category : Electric inductors
Languages : en
Pages : 310

Book Description
Spiral inductors are a key component of mixed-signal and analog integrated circuits (IC's). Such circuits are often fabricated using silicon-based technology, owing to the inherent low-cost and high volume production aspects. However, semiconducting substrate materials such as silicon can have adverse effects on spiral inductor performance due to the lossy nature of the material. Since the operating requirements of many high performance IC's demand reactive components that have high Quality Factor's (Q's), and are thus low loss devices, the need for accurate modeling of such structures over lossy substrate media is key to successful circuit design. The Q's of commonly available off-chip inductors are in the range of 50- 100 for frequencies ranging up to a few gigahertz. Since off-chip inductors must be connected through package pins, solder bumps, etc., which all contribute additional loss and thus lower the apparent Q of an external device, the typical on-chip Q requirement for a given RFIC design is generally lower than that for an off-chip spiral solution. However, a spiral inductor that was designed and fabricated originally in a low loss technology such as thin-film alumina may have substantially worse performance in regard to Q if it is used in a silicon-based technology, owing to the conductive substrate. For this reason, it is imperative that semiconducting substrate effects be accurately accounted for by any modeling effort for monolithic spirals in RFICs. This thesis presents a complete modeling solution for both single and multi-level spiral inductors over lossy silicon substrates, along with design considerations and methods for mitigation of the undesirable performance effects of semiconducting substrates. The modeling solution is based on Spectral Domain Approach (SDA) solutions for frequency dependent complex capacitive (i.e. both capacitance and conductance) parasitic elements combined with a quasi-magnetostatic field solution for calculation of the frequency dependent complex inductive (i.e. both inductance and resistance) terms. The effects of geometry and process variations are considered as well as the incorporation of Patterned Ground Shields (PGS) for the purpose of Q enhancement. Proposals for future extensions of this work are discussed in the concluding chapter.

Monolithic Inductors for Silicon Radio Frequency Integrated Circuits

Monolithic Inductors for Silicon Radio Frequency Integrated Circuits PDF Author: Mina Danesh
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
A novel parameter extraction technique is applied to the modeling of rectangular spiral inductors and validated with measurements and simulations. To enhance the inductor quality ('Q') factor, a differentially excited symmetric inductor is used. Compared with a single-ended configuration, the differential structure offers a higher 'Q'-factor over a wider range of frequencies. Application of the symmetric inductor model is demonstrated using two oscillator designs in which a differentially excited symmetric inductor is compared with conventional spiral inductors. The symmetric inductor improves the overall circuit performance and saves chip area.

Design, Simulation and Applications of Inductors and Transformers for Si RF ICs

Design, Simulation and Applications of Inductors and Transformers for Si RF ICs PDF Author: Ali M. Niknejad
Publisher: Springer Science & Business Media
ISBN: 0306470381
Category : Technology & Engineering
Languages : en
Pages : 193

Book Description
The modern wireless communication industry has put great demands on circuit designers for smaller, cheaper transceivers in the gigahertz frequency range. One tool which has assisted designers in satisfying these requirements is the use of on-chip inductiveelements (inductors and transformers) in silicon (Si) radio-frequency (RF) integrated circuits (ICs). These elements allow greatly improved levels of performance in Si monolithic low-noise amplifiers, power amplifiers, up-conversion and down-conversion mixers and local oscillators. Inductors can be used to improve the intermodulation distortion performance and noise figure of small-signal amplifiers and mixers. In addition, the gain of amplifier stages can be enhanced and the realization of low-cost on-chip local oscillators with good phase noise characteristics is made feasible. In order to reap these benefits, it is essential that the IC designer be able to predict and optimize the characteristics of on-chip inductiveelements. Accurate knowledge of inductance values, quality factor (Q) and the influence of ad- cent elements (on-chip proximity effects) and substrate losses is essential. In this book the analysis, modeling and application of on-chip inductive elements is considered. Using analyses based on Maxwells equations, an accurate and efficient technique is developed to model these elements over a wide frequency range. Energy loss to the conductive substrate is modeled through several mechanisms, including electrically induced displacement and conductive c- rents and by magnetically induced eddy currents. These techniques have been compiled in a user-friendly software tool ASITIC (Analysis and Simulation of Inductors and Transformers for Integrated Circuits).

Design and Analysis of Spiral Inductors

Design and Analysis of Spiral Inductors PDF Author: Genemala Haobijam
Publisher: Springer Science & Business Media
ISBN: 813221515X
Category : Technology & Engineering
Languages : en
Pages : 116

Book Description
The book addresses the critical challenges faced by the ever-expanding wireless communication market and the increasing frequency of operation due to continuous innovation of high performance integrated passive devices. The challenges like low quality factor, design complexity, manufacturability, processing cost, etc., are studied with examples and specifics. Silicon on-chip inductor was first reported in 1990 by Nguyen and Meyer in a 0.8 μm silicon bipolar complementary metal oxide semiconductor technology (BiCMOS). Since then, there has been an enormous progress in the research on the performance trends, design and optimization, modeling, quality factor enhancement techniques, etc., of spiral inductors and significant results are reported in literature for various applications. This book introduces an efficient method of determining the optimized layout of on chip spiral inductor. The important fundamental tradeoffs of the design like quality factor and area, quality factor and inductance, quality factor and operating frequency, maximum quality factor and the peak frequency is also explored. The authors proposed an algorithm for accurate design and optimization of spiral inductors using a 3D electromagnetic simulator with minimum number of inductor structure simulations and thereby reducing its long computation time. A new multilayer pyramidal symmetric inductor structure is also proposed in this book. Being multilevel, the proposed inductor achieves high inductance to area ratio and hence occupies smaller silicon area.

Monolithic Inductors for Silicon Radio Frequency Integrated Circuits

Monolithic Inductors for Silicon Radio Frequency Integrated Circuits PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


On-chip Spiral Inductors for Silicon-based Radio-frequency Integrated Circuits

On-chip Spiral Inductors for Silicon-based Radio-frequency Integrated Circuits PDF Author: Chik Patrick Yue
Publisher:
ISBN:
Category : Electric inductors
Languages : en
Pages : 244

Book Description


Design and Test of Integrated Inductors for RF Applications

Design and Test of Integrated Inductors for RF Applications PDF Author: Jaime Aguilera
Publisher: Springer Science & Business Media
ISBN: 0306487055
Category : Technology & Engineering
Languages : en
Pages : 203

Book Description
Intended for engineers who are starting out in the design of integrated inductors, this book describes the whole design flow, basic selection of the geometry and optimisation of the quality by redesigning the geometry, measurement and de-embedding and characterisation.

Radio-Frequency Integrated-Circuit Engineering

Radio-Frequency Integrated-Circuit Engineering PDF Author: Cam Nguyen
Publisher: John Wiley & Sons
ISBN: 1118936485
Category : Technology & Engineering
Languages : en
Pages : 898

Book Description
Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. * Provides essential knowledge in EM and microwave engineering, passive and active RFICs, RFIC analysis and design techniques, and RF systems vital for RFIC students and engineers * Blends analog and microwave engineering approaches for RFIC design at high frequencies * Includes problems at the end of each chapter

High-performance RF Coil Inductors on Silicon

High-performance RF Coil Inductors on Silicon PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description
Strong demand for wireless communication devices has motivated research directed toward monolithic integration of transceivers. The fundamental electronic component least compatible with silicon integrated circuits is the inductor, although a number of inductors are required to implement oscillators, filters and matching networks in cellular devices. Spiral inductors have been integrated into the silicon IC metallization sequence but have not performed adequately due to coupling to the silicon which results in parasitic capacitance and loss. We have, for the first time, fabricated three dimensional coil inductors on silicon which have significantly lower capacitive coupling and loss and which now exceed the requirements of potential applications. Quality factors of 30 at 1 GHz have been measured in single turn devices and Q> 16 in 2 and 4 turn devices. The reduced Q for multiturn devices appears to be related to eddy currents in outer turns generated by magnetic fields from current in neighboring turns. Higher Q values significantly in excess of 30 are anticipated using modified coil designs.

Modeling And Parameter Extraction Techniques Of Silicon-based Radio Frequency Devices

Modeling And Parameter Extraction Techniques Of Silicon-based Radio Frequency Devices PDF Author: Ao Zhang
Publisher: World Scientific
ISBN: 9811255377
Category : Technology & Engineering
Languages : en
Pages : 322

Book Description
This comprehensive compendium describes the basic modeling techniques for silicon-based semiconductor devices, introduces the basic concepts of silicon-based passive and active devices, and provides its state-of-the-art modeling and equivalent circuit parameter extraction methods.The unique reference text benefits practicing engineers, technicians, senior undergraduate and first-year graduate students working in the areas of RF, microwave and solid-state device, and integrated circuit design.