Increasing Yield of Late-planted Soybean Through Management Practices in the Southern Great Plains PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Increasing Yield of Late-planted Soybean Through Management Practices in the Southern Great Plains PDF full book. Access full book title Increasing Yield of Late-planted Soybean Through Management Practices in the Southern Great Plains by Alexandre Stefani Barreiro. Download full books in PDF and EPUB format.

Increasing Yield of Late-planted Soybean Through Management Practices in the Southern Great Plains

Increasing Yield of Late-planted Soybean Through Management Practices in the Southern Great Plains PDF Author: Alexandre Stefani Barreiro
Publisher:
ISBN:
Category :
Languages : en
Pages : 117

Book Description
Increased soybean commodity prices and high-yielding cultivars have instigated producers to expand soybean production outside traditional regions. Introduction of soybean to relatively new areas such as the Southern Great Plains, has created the need for management practices unique to the region to exploit full yield potential in these environments. Oklahoma soybean production, for instance, frequently results in low yields due its adverse environmental conditions, along with common late-plantings, as a double crop following wheat harvest. Due to soybean photoperiod sensitivity, delayed planting leads to a shortened vegetative growth period, which potentially reduces seed yield. The influence of management practices, such as seeding rate, row spacing, maturity group selection, starter and foliar fertilization, irrigation, and the use of long juvenile soybean lines, on late-planted soybean yields has not yet been evaluated in the Southern Great Plains. The objectives of this study are to evaluate the effect of these specific management strategies on late-planted soybean yields and their potential adoption in the Southern Great Plains to minimize yield losses in these late production systems. Four different field studies were established on late plantings in Oklahoma as followed by numbers 1, 2, 3, and 4: 1) Four seeding rates ranging from 198,000 to 383,000 seeds ha-1, three row spacings (19, 38, and 76 cm) and two maturity groups (4.8 and 5.6) under rainfed conditions. Seed yield, plant population, canopy cover, and partial economic return were analyzed. Seed yield was not affected by seeding density, but yield results for 38 and 76 cm row spacings showed slight advantage to 19 cm rows. Partial economic return of 38 and 76 cm rows ranged from 13 to 25% greater than 19 cm row spacing, with the greatest returns at the lowest seeding densities. 2) Three soybean lines from maturity group (MG) 6, 7, and 8 carrying the long juvenile trait (LJ) were compared to three high-yielding varieties from MG 3, 4, and 5, in four planting dates from late-May to late-June. Vegetative growth period, canopy cover, seed yield, and seed quality were evaluated. Long juvenile soybean lines had greater growth but similar yields compared to non LJ varieties, due to the extended growth period overlapping early reproductive stages diminishing seed production potential. 3) Fertilization strategies including two starter and four foliar treatments were compared to a control treatment with no fertilizer applied. Starter or foliar treatments resulted in no seed yield differences compared to control treatment. 4) Soybean from MGs 4.8 and 5.6 were sown in 19 and 76 cm row spacings at three seeding rates (247,000, 346,000, and 445,000 seeds ha-1 were tested under irrigated conditions and seed yield evaluated. Seed yield of late-planted soybean under irrigation was affected only by MG. Seeding rate and row spacing had no effect on yield. Average yield of MG 4.8, across row spacings and years was 2620 kg ha−1, which was 25 % greater than MG 5.6 yield (1980 kg ha−1).

Increasing Yield of Late-planted Soybean Through Management Practices in the Southern Great Plains

Increasing Yield of Late-planted Soybean Through Management Practices in the Southern Great Plains PDF Author: Alexandre Stefani Barreiro
Publisher:
ISBN:
Category :
Languages : en
Pages : 117

Book Description
Increased soybean commodity prices and high-yielding cultivars have instigated producers to expand soybean production outside traditional regions. Introduction of soybean to relatively new areas such as the Southern Great Plains, has created the need for management practices unique to the region to exploit full yield potential in these environments. Oklahoma soybean production, for instance, frequently results in low yields due its adverse environmental conditions, along with common late-plantings, as a double crop following wheat harvest. Due to soybean photoperiod sensitivity, delayed planting leads to a shortened vegetative growth period, which potentially reduces seed yield. The influence of management practices, such as seeding rate, row spacing, maturity group selection, starter and foliar fertilization, irrigation, and the use of long juvenile soybean lines, on late-planted soybean yields has not yet been evaluated in the Southern Great Plains. The objectives of this study are to evaluate the effect of these specific management strategies on late-planted soybean yields and their potential adoption in the Southern Great Plains to minimize yield losses in these late production systems. Four different field studies were established on late plantings in Oklahoma as followed by numbers 1, 2, 3, and 4: 1) Four seeding rates ranging from 198,000 to 383,000 seeds ha-1, three row spacings (19, 38, and 76 cm) and two maturity groups (4.8 and 5.6) under rainfed conditions. Seed yield, plant population, canopy cover, and partial economic return were analyzed. Seed yield was not affected by seeding density, but yield results for 38 and 76 cm row spacings showed slight advantage to 19 cm rows. Partial economic return of 38 and 76 cm rows ranged from 13 to 25% greater than 19 cm row spacing, with the greatest returns at the lowest seeding densities. 2) Three soybean lines from maturity group (MG) 6, 7, and 8 carrying the long juvenile trait (LJ) were compared to three high-yielding varieties from MG 3, 4, and 5, in four planting dates from late-May to late-June. Vegetative growth period, canopy cover, seed yield, and seed quality were evaluated. Long juvenile soybean lines had greater growth but similar yields compared to non LJ varieties, due to the extended growth period overlapping early reproductive stages diminishing seed production potential. 3) Fertilization strategies including two starter and four foliar treatments were compared to a control treatment with no fertilizer applied. Starter or foliar treatments resulted in no seed yield differences compared to control treatment. 4) Soybean from MGs 4.8 and 5.6 were sown in 19 and 76 cm row spacings at three seeding rates (247,000, 346,000, and 445,000 seeds ha-1 were tested under irrigated conditions and seed yield evaluated. Seed yield of late-planted soybean under irrigation was affected only by MG. Seeding rate and row spacing had no effect on yield. Average yield of MG 4.8, across row spacings and years was 2620 kg ha−1, which was 25 % greater than MG 5.6 yield (1980 kg ha−1).

A Data-driven Approach to Evaluating Soybean Best Management Practices

A Data-driven Approach to Evaluating Soybean Best Management Practices PDF Author: Emma Grace Matcham
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Regularly evaluating best management practices for soybean is important to maintaining agronomic crop production as the climate and seed varieties change over time. Many phosphorous and potassium fertilizer recommendations in the North Central US are based on the build-maintain framework and were developed in 1970s and 80s and are due to be reevaluated. To estimate the yield-maximizing soil test potassium level (YMK) under current growing conditions, nutrient management records and yield maps from southern WI were analyzed via quadratic quantile regression to estimate both overall YMK and determine if YMK varied across the study space. The overall YMK was 76 ppm, and lower buffer pH and organic matter levels were associated with higher YMK. Some fertilizer recommendations include leaf tissue K concentrations in addition to soil test K levels. Results of a 2021 on-farm trial indicate that the critical K concentration in soybean leaf tissue is 2.04%. The relationship between K soil test results from Bray-1 extraction and Mehlich-3 extraction for silty loam soils was represented by the linear regression line Bray = 0.77 * Mehlich - 0.75. Management decisions that increase soybean yield are region-specific and vary between planting dates, so larger multi-state research projects are valuable for developing best management practices. In a survey study of soybean farmers in ten North Central US states, late-planted fields had higher yields associated with tillage and using both a PRE and POST herbicide application. Early-planted fields had higher yields associated with artificial drainage, insecticide seed treatment, and lower seeding rates. Less variation between sites was observed in a small-plot study of foliar fertilizers across 46 site-years in 16 eastern US states. Foliar fertilizers did not increase soybean yield in the absence of visual symptoms of nutrient deficiency. In multi-state and on-farm research, efficient processing of yield maps represents a research bottleneck. A new R package, cleanRfield, allows for more efficient processing of yield maps. Together, these projects represent ways for multistate and multidisciplinary teams to leverage technology and improve best management practices for soybean production.

Effects of Late Planting Dates, Maturity Groups and Management Systems on Growth, Development and Yield of Soybean in South Carolina

Effects of Late Planting Dates, Maturity Groups and Management Systems on Growth, Development and Yield of Soybean in South Carolina PDF Author: Mengxuan Hu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract: Planting date plays a significant role in determining soybean growth, development and seed yield. The objectives of this experiment were to evaluate the effects of late planting date, management system, and maturity group on the growth, development and seed yield of maturity group VII and VIII soybean under dry land conditions in the Southeastern coastal plain of the United States. Plant growth and development, seed yield, yield components, and seed oil and protein concentrations were evaluated throughout the season. These experiments were conducted in South Carolina at the Edisto Research and Education Center near Blackville and the Pee Dee Research and Education Center near Florence. Soybean was planted at four weekly intervals starting on 15-June in both 2011 and 2012. Pioneer 97M50 (a MG VII determinate variety) and Prichard Roundup Ready (a MG VIII determinate variety) were selected based on their adaptation to the Southeast. The two management systems were: a strip-till (ST) system using a John Deere MaxEmerge Vaccum planter + Unverferth 300 strip till with 96-cm row spacing and a drilled no-till (NT) planting system with 19-cm row spacing. Plant growth was evaluated based on leaf area index (LAI), Normalized Difference Vegetation Index (NDVI), and plant height (HT). Plant development was calculated based on the duration (days) of growth stages. Growth stages were recorded weekly from 10 randomly selected plants in each plot. The beginning of each stage was determined when at least 50% of plants were at that stage. Overall, planting after 22 June appeared to reduce seed yield. The ST system increased the seed yield compared to the drilled NT system. Yields were greater for the MG VIII variety than the MG VII variety. LAI, NDVI, and HT at R2 and R4 were generally reduced with delayed planting dates. Later planting shortened the duration of both vegetative and reproductive growth stages for both MG VII and VIII soybeans. Shortened duration of vegetative growth and seed filling period might have contributed most to the lower yields observed in delayed planting dates. Planting date did not affect either protein or oil concentration. Protein concentration in the seed was found to be significantly higher and oil concentration lower in soybean grown in the ST system than in the drilled NT system. Positive correlations were found between: seed yield and LAI, NDVI, and HT at R2 and R4; seed yield and duration of vegetative and seed filling growth period; and seed yield and dry weight of each plant part (branches, stems, petioles, leaves, and pods).

Identifying Optimal Management Decisions Based on Soybean Planting Date

Identifying Optimal Management Decisions Based on Soybean Planting Date PDF Author: Thomas Bernard Siler
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 98

Book Description
The practice of early-season soybean [Glycine Max (L.) Merr.] planting has been increasing in the northern US. However, a wide range of planting dates (PDs) are still implemented due to poor soil conditions, inclement weather, equipment restrictions, crop rotation, and operation size. Information regarding how soybean management decisions should be adjusted based on PD is lacking in Michigan and other northern US regions. This research was conducted to identify how optimal soybean seeding rate (SR), seed treatment (ST) use, and variety maturity group (MG) selection is determined by PD. Field experiments were conducted at two locations in Michigan during the 2018 and 2019 growing season. In the first experiment, soybean was planted at five SRs, between 123,553 and 518,921 seeds ha−1, with or without a ST, on four PDs (late-April to late-June). In the second experiment, six soybean MGs, between 1.0 and 3.5, were planted on four PDs (late-April to late-June). The use of a ST did not improve yield or net returns in this study. When soybean was planted before mid-May, seed yield and net returns were maximized by planting a late MG (≥ 3.0) at a SR between 187,660 and 201,451 seeds ha−1. The optimal SR between the mid-May and early-June PDs was between 220,301 and 265,305 seeds ha−1 and MG selection had less influence on seed yield compared to earlier PDs. When planting was delayed to late-June, using an early MG (≤ 2.5) resulted in the optimal yield and the optimal SR was > 330,000. Results from this study show that soybean yield, quality, and net returns can be improved by adjusting management practices based on PD.

IGrow Soybeans

IGrow Soybeans PDF Author:
Publisher:
ISBN: 9780985630911
Category :
Languages : en
Pages : 600

Book Description
Agronomic recommendations for soybean production in the Midwest

Managing Cover Crops Profitably (3rd Ed. )

Managing Cover Crops Profitably (3rd Ed. ) PDF Author: Andy Clark
Publisher: DIANE Publishing
ISBN: 1437903797
Category : Technology & Engineering
Languages : en
Pages : 248

Book Description
Cover crops slow erosion, improve soil, smother weeds, enhance nutrient and moisture availability, help control many pests and bring a host of other benefits to your farm. At the same time, they can reduce costs, increase profits and even create new sources of income. You¿ll reap dividends on your cover crop investments for years, since their benefits accumulate over the long term. This book will help you find which ones are right for you. Captures farmer and other research results from the past ten years. The authors verified the info. from the 2nd ed., added new results and updated farmer profiles and research data, and added 2 chap. Includes maps and charts, detailed narratives about individual cover crop species, and chap. about aspects of cover cropping.

Evaluation of Soybean (Glycine Max) Planting Dates and Plant Densities in Northern Growing Regions of the Northern Great Plains

Evaluation of Soybean (Glycine Max) Planting Dates and Plant Densities in Northern Growing Regions of the Northern Great Plains PDF Author: Cassandra Tkachuk
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Soybean (Glycine max L. Merr.) planting date and plant density are agronomic decisions made simultaneously at the beginning of the growing season that can be used to maximize yield and economic return. Research on these basic soybean agronomic decisions must be conducted to support the expansion of soybean production in northern growing regions of the Northern Great Plains (NGP). The objectives of this study were to evaluate the effects of planting dates based on soil temperature on soybean emergence, maturity, and yield for short and long season varieties in Manitoba, and to determine optimum soybean plant density for early to very late planting dates in northern growing regions of the NGP. In the first experiment, calendar date had a greater influence than soil temperature at planting on soybean yield. Soybean yield declined with later planting rather than increasing soil temperature at planting. The earliest planting dates resulted in the greatest soybean yields. In the second experiment, soybean yield-density relationships were responsive to planting date. Yield-density relationships formed early/mid (May 4 to 26) and late/very late (June 2 to 23) planting date groups for combined site years. Early/mid planting dates resulted in greater maximum yields. According to the yield-density model, true yield maximization did not occur for any planting dates and site years within the range of plant densities tested in this field study. Soybean economic optimum seed densities (EOSDs) were much lower than predicted plant densities that maximized yield. Soybean EOSDs were identified as 492,000 and 314,000 seeds ha-1 by marginal cost analysis for early/mid and late/very late planting, respectfully. These values were sensitive to changes in soybean grain price and seed cost. Thus, growers need to adjust EOSDs for changes in price and cost. A combined analysis of soybean yields from both experiments using similar target plant densities determined that a significant negative linear relationship existed between soybean yield and planting date. The greatest soybean yields resulted from early planting and declined by 16 kg ha-1 for each one-day delay in planting from Apr 27 to June 16. However, yield responses varied among site years. The overall recommendation from this study would be to plant soybeans during the month of May at a profit-maximizing seed density, accounting for fluctuating grain price and seed cost.

Strategies for Increasing Soybean Yields at Late Planting Dates

Strategies for Increasing Soybean Yields at Late Planting Dates PDF Author: J. E. Board
Publisher:
ISBN:
Category : Soybean
Languages : en
Pages : 24

Book Description


Improving Soybean Performance in the Northern Great Plains Through the Use of Cover Crops

Improving Soybean Performance in the Northern Great Plains Through the Use of Cover Crops PDF Author: Kurt J. Dagel
Publisher:
ISBN: 9780963785800
Category : Cover crops
Languages : en
Pages : 142

Book Description


Soybean Planting Date and Seeding Rate Effects on Stand Loss, Grain Yield, Agronomic Optimum Seeding Rate, Partial Net Economic Return, and Seed Quality

Soybean Planting Date and Seeding Rate Effects on Stand Loss, Grain Yield, Agronomic Optimum Seeding Rate, Partial Net Economic Return, and Seed Quality PDF Author: Fabiano Colet
Publisher:
ISBN:
Category : Planting (Plant culture)
Languages : en
Pages : 0

Book Description
Planting soybean early (late April through early May) is recommended to achieve high grain yields. However, unfavorable conditions can limit farmers’ ability to plant during the recommended period, and thus, an increase in the seeding rate may be necessary. Also, weather conditions can affect seed quality, and choosing an adequate planting date can mitigate the impacts of unfavorable weather on the seed. Thus, the objectives of this study were to (1) measure the effect of planting date and seeding rate on stand loss over the growing season, (2) measure the effect of soybean seeding rate and planting date on grain yield, (3) identify the agronomic optimum soybean seeding rate (AOSR) and the partial economic return for the lowest and highest soybean price, and (4) measure the effect of soybean planting date and seeding rate on harvested seed mass, seed germination, and seedling vigor. For these objectives, a field study was conducted for two growing seasons at two locations in Ohio: Western (WARS) and Northwest (NWARS) Agricultural Research Stations. The experimental design used was a split-plot randomized complete block with four replications. The main plot factor was four planting dates ranging from 25 April through 10 July, and the split-plot factor was five seeding rates ranging from 123,500 to 618,000 seeds ha-1. At WARS-2020, planting soybeans in April through early June had a similar grain yield (5,090-5,285 kg ha-1), while there was a reduction in grain yield when soybean was planted in late June (4,216 kg ha-1). In contrast, in WARS-2021, planting dates did not statically influence grain yield. At NWARS-2020, a small amount of rainfall during the pod-setting growth stages (R3-R4 stages) impacted and reduced the grain yield for soybeans planted in April (3,113 kg ha-1) and May (2,909 kg ha-1) when compared to soybean planted on early-June (3,595 kg ha-1). The AOSR changed among site-years. For soybean grown under normal weather conditions, the AOSR needed to be increased as planting was delayed to achieve the highest grain yield. The planting date factor also impacted soybean seed quality. The germination rate in all site-years was above 94%; however, soybean planted in early June had the lowest seedling vigor results (64 to 81%) compared to other planting dates (80 to 89%) in both locations. These findings can help growers improve grain yield, increase economic return, and produce high-quality seeds.