Incorporating Social Information Into An Autonomous Vehicle's Decision-Making Process and Control PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Incorporating Social Information Into An Autonomous Vehicle's Decision-Making Process and Control PDF full book. Access full book title Incorporating Social Information Into An Autonomous Vehicle's Decision-Making Process and Control by Kasra Mokhtari. Download full books in PDF and EPUB format.

Incorporating Social Information Into An Autonomous Vehicle's Decision-Making Process and Control

Incorporating Social Information Into An Autonomous Vehicle's Decision-Making Process and Control PDF Author: Kasra Mokhtari
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
How can autonomous vehicles offer safer behavior by accounting for social information? Social information includes not only information about the number of pedestrians, but also pedestrians' behavior, age, course of action, etc. While driving, the interaction of a vehicle and the other road users is complicated because each operator acts dynamically and according to their own will, thus creating additional uncertainties for an autonomous vehicle to consider. To address some of these uncertainties and to avoid collisions human drivers use a variety of tricks and heuristics learned during their time driving. However, substituting human drivers with autonomous control systems comes at the price of eliminating the underlying social intelligence of human drivers that makes these predictions possible. Steps should, therefore, be taken to imbue autonomous vehicles with the ability to use social information to increase safety since information about the social environment may provide autonomous vehicles with valuable data influencing how these systems select and moderate their actions. This dissertation develops well-defined methods that will enable an autonomous vehicle to use social information to adjust the vehicle's course of action with the hope of providing a much safer environment for pedestrians, other car drivers, and AV passengers. We first generate our social information dataset by repeatedly driving in State College, PA along the different paths. We then present an initial examination of how social information (i.e. pedestrian density) could be used first for path recognition and then for predicting the number of pedestrians that the vehicle will encounter in the future which is intuitively related to the risk of traveling down a path for autonomous vehicles. Moreover, we develop a method for an AV operating near a college campus to evaluate the risk associated with different options and to select the minimal risk option in the hope of improving safety. We then design a decision-making framework for controlling an autonomous vehicle as it navigates through an unsignalized intersection crowded with pedestrians in both cases where it receives true state of the environment and noisy observations. We hope that the research presented in this dissertation will inspire future researchers to develop autonomous vehicles that more intelligently and efficiently account for pedestrian information in their decision-making framework to make a collision-free world.

Incorporating Social Information Into An Autonomous Vehicle's Decision-Making Process and Control

Incorporating Social Information Into An Autonomous Vehicle's Decision-Making Process and Control PDF Author: Kasra Mokhtari
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
How can autonomous vehicles offer safer behavior by accounting for social information? Social information includes not only information about the number of pedestrians, but also pedestrians' behavior, age, course of action, etc. While driving, the interaction of a vehicle and the other road users is complicated because each operator acts dynamically and according to their own will, thus creating additional uncertainties for an autonomous vehicle to consider. To address some of these uncertainties and to avoid collisions human drivers use a variety of tricks and heuristics learned during their time driving. However, substituting human drivers with autonomous control systems comes at the price of eliminating the underlying social intelligence of human drivers that makes these predictions possible. Steps should, therefore, be taken to imbue autonomous vehicles with the ability to use social information to increase safety since information about the social environment may provide autonomous vehicles with valuable data influencing how these systems select and moderate their actions. This dissertation develops well-defined methods that will enable an autonomous vehicle to use social information to adjust the vehicle's course of action with the hope of providing a much safer environment for pedestrians, other car drivers, and AV passengers. We first generate our social information dataset by repeatedly driving in State College, PA along the different paths. We then present an initial examination of how social information (i.e. pedestrian density) could be used first for path recognition and then for predicting the number of pedestrians that the vehicle will encounter in the future which is intuitively related to the risk of traveling down a path for autonomous vehicles. Moreover, we develop a method for an AV operating near a college campus to evaluate the risk associated with different options and to select the minimal risk option in the hope of improving safety. We then design a decision-making framework for controlling an autonomous vehicle as it navigates through an unsignalized intersection crowded with pedestrians in both cases where it receives true state of the environment and noisy observations. We hope that the research presented in this dissertation will inspire future researchers to develop autonomous vehicles that more intelligently and efficiently account for pedestrian information in their decision-making framework to make a collision-free world.

Human-Like Decision Making and Control for Autonomous Driving

Human-Like Decision Making and Control for Autonomous Driving PDF Author: Peng Hang
Publisher: CRC Press
ISBN: 1000624951
Category : Mathematics
Languages : en
Pages : 201

Book Description
This book details cutting-edge research into human-like driving technology, utilising game theory to better suit a human and machine hybrid driving environment. Covering feature identification and modelling of human driving behaviours, the book explains how to design an algorithm for decision making and control of autonomous vehicles in complex scenarios. Beginning with a review of current research in the field, the book uses this as a springboard from which to present a new theory of human-like driving framework for autonomous vehicles. Chapters cover system models of decision making and control, driving safety, riding comfort and travel efficiency. Throughout the book, game theory is applied to human-like decision making, enabling the autonomous vehicle and the human driver interaction to be modelled using noncooperative game theory approach. It also uses game theory to model collaborative decision making between connected autonomous vehicles. This framework enables human-like decision making and control of autonomous vehicles, which leads to safer and more efficient driving in complicated traffic scenarios. The book will be of interest to students and professionals alike, in the field of automotive engineering, computer engineering and control engineering.

Autonomous Vehicle Technology

Autonomous Vehicle Technology PDF Author: James M. Anderson
Publisher: Rand Corporation
ISBN: 0833084372
Category : Transportation
Languages : en
Pages : 215

Book Description
The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.

Decision-Making Techniques for Autonomous Vehicles

Decision-Making Techniques for Autonomous Vehicles PDF Author: Jorge Villagra
Publisher: Elsevier
ISBN: 0323985491
Category : Technology & Engineering
Languages : en
Pages : 426

Book Description
Decision-Making Techniques for Autonomous Vehicles provides a general overview of control and decision-making tools that could be used in autonomous vehicles. Motion prediction and planning tools are presented, along with the use of machine learning and adaptability to improve performance of algorithms in real scenarios. The book then examines how driver monitoring and behavior analysis are used produce comprehensive and predictable reactions in automated vehicles. The book ultimately covers regulatory and ethical issues to consider for implementing correct and robust decision-making. This book is for researchers as well as Masters and PhD students working with autonomous vehicles and decision algorithms. Provides a complete overview of decision-making and control techniques for autonomous vehicles Includes technical, physical, and mathematical explanations to provide knowledge for implementation of tools Features machine learning to improve performance of decision-making algorithms Shows how regulations and ethics influence the development and implementation of these algorithms in real scenarios

Creating Autonomous Vehicle Systems

Creating Autonomous Vehicle Systems PDF Author: Shaoshan Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1681731673
Category : Computers
Languages : en
Pages : 285

Book Description
This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.

Explainable Artificial Intelligence for Autonomous Vehicles

Explainable Artificial Intelligence for Autonomous Vehicles PDF Author: Kamal Malik
Publisher: CRC Press
ISBN: 1040099297
Category : Computers
Languages : en
Pages : 205

Book Description
Explainable AI for Autonomous Vehicles: Concepts, Challenges, and Applications is a comprehensive guide to developing and applying explainable artificial intelligence (XAI) in the context of autonomous vehicles. It begins with an introduction to XAI and its importance in developing autonomous vehicles. It also provides an overview of the challenges and limitations of traditional black-box AI models and how XAI can help address these challenges by providing transparency and interpretability in the decision-making process of autonomous vehicles. The book then covers the state-of-the-art techniques and methods for XAI in autonomous vehicles, including model-agnostic approaches, post-hoc explanations, and local and global interpretability techniques. It also discusses the challenges and applications of XAI in autonomous vehicles, such as enhancing safety and reliability, improving user trust and acceptance, and enhancing overall system performance. Ethical and social considerations are also addressed in the book, such as the impact of XAI on user privacy and autonomy and the potential for bias and discrimination in XAI-based systems. Furthermore, the book provides insights into future directions and emerging trends in XAI for autonomous vehicles, such as integrating XAI with other advanced technologies like machine learning and blockchain and the potential for XAI to enable new applications and services in the autonomous vehicle industry. Overall, the book aims to provide a comprehensive understanding of XAI and its applications in autonomous vehicles to help readers develop effective XAI solutions that can enhance autonomous vehicle systems' safety, reliability, and performance while improving user trust and acceptance. This book: Discusses authentication mechanisms for camera access, encryption protocols for data protection, and access control measures for camera systems. Showcases challenges such as integration with existing systems, privacy, and security concerns while implementing explainable artificial intelligence in autonomous vehicles. Covers explainable artificial intelligence for resource management, optimization, adaptive control, and decision-making. Explains important topics such as vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, remote monitoring, and control. Emphasizes enhancing safety, reliability, overall system performance, and improving user trust in autonomous vehicles. The book is intended to provide researchers, engineers, and practitioners with a comprehensive understanding of XAI's key concepts, challenges, and applications in the context of autonomous vehicles. It is primarily written for senior undergraduate, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer science and engineering, information technology, and automotive engineering.

Creating Autonomous Vehicle Systems, Second Edition

Creating Autonomous Vehicle Systems, Second Edition PDF Author: Liu Shaoshan
Publisher: Springer Nature
ISBN: 3031018052
Category : Mathematics
Languages : en
Pages : 221

Book Description
This book is one of the first technical overviews of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences designing autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions as to its future actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, new algorithms can be tested so as to update the HD map—in addition to training better recognition, tracking, and decision models. Since the first edition of this book was released, many universities have adopted it in their autonomous driving classes, and the authors received many helpful comments and feedback from readers. Based on this, the second edition was improved by extending and rewriting multiple chapters and adding two commercial test case studies. In addition, a new section entitled “Teaching and Learning from this Book” was added to help instructors better utilize this book in their classes. The second edition captures the latest advances in autonomous driving and that it also presents usable real-world case studies to help readers better understand how to utilize their lessons in commercial autonomous driving projects. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find extensive references for an effective, deeper exploration of the various technologies.

Autonomous Driving

Autonomous Driving PDF Author: Markus Maurer
Publisher: Springer
ISBN: 3662488477
Category : Technology & Engineering
Languages : en
Pages : 698

Book Description
This book takes a look at fully automated, autonomous vehicles and discusses many open questions: How can autonomous vehicles be integrated into the current transportation system with diverse users and human drivers? Where do automated vehicles fall under current legal frameworks? What risks are associated with automation and how will society respond to these risks? How will the marketplace react to automated vehicles and what changes may be necessary for companies? Experts from Germany and the United States define key societal, engineering, and mobility issues related to the automation of vehicles. They discuss the decisions programmers of automated vehicles must make to enable vehicles to perceive their environment, interact with other road users, and choose actions that may have ethical consequences. The authors further identify expectations and concerns that will form the basis for individual and societal acceptance of autonomous driving. While the safety benefits of such vehicles are tremendous, the authors demonstrate that these benefits will only be achieved if vehicles have an appropriate safety concept at the heart of their design. Realizing the potential of automated vehicles to reorganize traffic and transform mobility of people and goods requires similar care in the design of vehicles and networks. By covering all of these topics, the book aims to provide a current, comprehensive, and scientifically sound treatment of the emerging field of “autonomous driving".

Connected and Automated Vehicles: Integrating Engineering and Ethics

Connected and Automated Vehicles: Integrating Engineering and Ethics PDF Author: Fabio Fossa
Publisher: Springer Nature
ISBN: 3031399919
Category : Technology & Engineering
Languages : en
Pages : 204

Book Description
This book reports on theoretical and practical analyses of the ethical challenges connected to driving automation. It also aims at discussing issues that have arisen from the European Commission 2020 report “Ethics of Connected and Automated Vehicles. Recommendations on Road Safety, Privacy, Fairness, Explainability and Responsibility”. Gathering contributions by philosophers, social scientists, mechanical engineers, and UI designers, the book discusses key ethical concerns relating to responsibility and personal autonomy, privacy, safety, and cybersecurity, as well as explainability and human-machine interaction. On the one hand, it examines these issues from a theoretical, normative point of view. On the other hand, it proposes practical strategies to face the most urgent ethical problems, showing how the integration of ethics and technology can be achieved through design practices. All in all, this book fosters a multidisciplinary approach where philosophy, ethics, and engineering are integrated, rather than just juxtaposed. It is meant to inform and inspire an audience of philosophers of technology, ethicists, engineers, developers, manufacturers, and regulators, among other interested readers.

Decision-making Strategies for Automated Driving in Urban Environments

Decision-making Strategies for Automated Driving in Urban Environments PDF Author: Antonio Artuñedo
Publisher: Springer Nature
ISBN: 3030459055
Category : Technology & Engineering
Languages : en
Pages : 205

Book Description
This book describes an effective decision-making and planning architecture for enhancing the navigation capabilities of automated vehicles in the presence of non-detailed, open-source maps. The system involves dynamically obtaining road corridors from map information and utilizing a camera-based lane detection system to update and enhance the navigable space in order to address the issues of intrinsic uncertainty and low-fidelity. An efficient and human-like local planner then determines, within a probabilistic framework, a safe motion trajectory, ensuring the continuity of the path curvature and limiting longitudinal and lateral accelerations. LiDAR-based perception is then used to identify the driving scenario, and subsequently re-plan the trajectory, leading in some cases to adjustment of the high-level route to reach the given destination. The method has been validated through extensive theoretical and experimental analyses, which are reported here in detail.