IN VITRO IMAGING USING STABLE, WATER DISPERSIBLE LUMINESCENT SI QUANTUM DOTS CAPPED WITH VARIOUS CELLULAR TARGETING AGENTS PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download IN VITRO IMAGING USING STABLE, WATER DISPERSIBLE LUMINESCENT SI QUANTUM DOTS CAPPED WITH VARIOUS CELLULAR TARGETING AGENTS PDF full book. Access full book title IN VITRO IMAGING USING STABLE, WATER DISPERSIBLE LUMINESCENT SI QUANTUM DOTS CAPPED WITH VARIOUS CELLULAR TARGETING AGENTS by Chen-An Tien. Download full books in PDF and EPUB format.

IN VITRO IMAGING USING STABLE, WATER DISPERSIBLE LUMINESCENT SI QUANTUM DOTS CAPPED WITH VARIOUS CELLULAR TARGETING AGENTS

IN VITRO IMAGING USING STABLE, WATER DISPERSIBLE LUMINESCENT SI QUANTUM DOTS CAPPED WITH VARIOUS CELLULAR TARGETING AGENTS PDF Author: Chen-An Tien
Publisher:
ISBN:
Category :
Languages : en
Pages : 60

Book Description
This thesis presents research on the synthesis, functionalization, and biological applications of silicon nanocrystals, also called silicon quantum dots (Si QDs). Over the past 20 years, semiconductor nanocrystals (also known as quantum dots or QDs) have been investigated for applications ranging from electronic materials science to biological imaging. The outstanding optical properties of QDs, which include stable luminescence, tunable luminescence color, modifiable surface characteristics, and the potential to interface with biologically relevant molecules, have made QDs a good replacement for organic dyes in many applications. Silicon nanocrystals show many of the same useful optical properties but lower toxicity than cadmium based quantum dots for biological applications.^In this thesis, I focus on the biological applications of silicon nanocrystals in fluorescent biosensing and cellular labeling applications. Conventional quantum dots have great potential in cancer-related imaging and diagnostic applications; however, these applications are limited by concerns about the inherent toxicity of their core materials (e.g. cadmium, lead). Virtually all imaging applications require conjugation of the imaging agent to a biologically active molecule to achieve selective uptake or binding. Here, we report a study of biocompatible silicon quantum dots covalently attached to biomolecules including lysine, folate, anti-mesothelin, and transferrin. The particles possess desirable physical properties, surface chemistry, and optical properties. Folate- and anti-mesothelin-conjugated silicon quantum dots show selective uptake into Panc-1 cells.^This study contributes to the preclinical evaluation of silicon quantum dots and further demonstrates their potential as an imaging agent for cancer applications. Major bionanotechnology research issues in quantum dot synthesis include the stabilization of their optical properties using various coating and encapsulation strategies, and advancing the rational design of constructs containing them to optimize overall size, surface chemistry, and composition in order to minimize potential toxicity and overcome biological barriers. Conventional cadmium- and lead-based quantum dots are normally coated, because their degradation may result in the release of toxic heavy metal ions. For in vivo use, they must be cleared from the body without degradation. Freestanding silicon quantum dots are expected to biodegrade to non-toxic products (e.g. silicic acid); however they have not been evaluated in biodegradable nanocarriers.^Previous work from our group has encapsulated them with non-toxic, but non-biodegradable phospholipid-polyethylene glycol surfactants. Here, we report the development of chitosan-coated silicon nanoparticles (CSi QDs). Evaluation of the physicochemical and optical properties of the CSi QDs shows that they remain optically active in aqueous media. The chitosan coating renders silicon quantum dots stable in aqueous biological media and useful for biological applications such as cellular imaging with single and two photon excitation. The particles are also degradable when incubated at physiological temperature. These results open the door for a new generation of silicon quantum dots that may have a wide variety of applications derived from the flexibility of chitosan.

IN VITRO IMAGING USING STABLE, WATER DISPERSIBLE LUMINESCENT SI QUANTUM DOTS CAPPED WITH VARIOUS CELLULAR TARGETING AGENTS

IN VITRO IMAGING USING STABLE, WATER DISPERSIBLE LUMINESCENT SI QUANTUM DOTS CAPPED WITH VARIOUS CELLULAR TARGETING AGENTS PDF Author: Chen-An Tien
Publisher:
ISBN:
Category :
Languages : en
Pages : 60

Book Description
This thesis presents research on the synthesis, functionalization, and biological applications of silicon nanocrystals, also called silicon quantum dots (Si QDs). Over the past 20 years, semiconductor nanocrystals (also known as quantum dots or QDs) have been investigated for applications ranging from electronic materials science to biological imaging. The outstanding optical properties of QDs, which include stable luminescence, tunable luminescence color, modifiable surface characteristics, and the potential to interface with biologically relevant molecules, have made QDs a good replacement for organic dyes in many applications. Silicon nanocrystals show many of the same useful optical properties but lower toxicity than cadmium based quantum dots for biological applications.^In this thesis, I focus on the biological applications of silicon nanocrystals in fluorescent biosensing and cellular labeling applications. Conventional quantum dots have great potential in cancer-related imaging and diagnostic applications; however, these applications are limited by concerns about the inherent toxicity of their core materials (e.g. cadmium, lead). Virtually all imaging applications require conjugation of the imaging agent to a biologically active molecule to achieve selective uptake or binding. Here, we report a study of biocompatible silicon quantum dots covalently attached to biomolecules including lysine, folate, anti-mesothelin, and transferrin. The particles possess desirable physical properties, surface chemistry, and optical properties. Folate- and anti-mesothelin-conjugated silicon quantum dots show selective uptake into Panc-1 cells.^This study contributes to the preclinical evaluation of silicon quantum dots and further demonstrates their potential as an imaging agent for cancer applications. Major bionanotechnology research issues in quantum dot synthesis include the stabilization of their optical properties using various coating and encapsulation strategies, and advancing the rational design of constructs containing them to optimize overall size, surface chemistry, and composition in order to minimize potential toxicity and overcome biological barriers. Conventional cadmium- and lead-based quantum dots are normally coated, because their degradation may result in the release of toxic heavy metal ions. For in vivo use, they must be cleared from the body without degradation. Freestanding silicon quantum dots are expected to biodegrade to non-toxic products (e.g. silicic acid); however they have not been evaluated in biodegradable nanocarriers.^Previous work from our group has encapsulated them with non-toxic, but non-biodegradable phospholipid-polyethylene glycol surfactants. Here, we report the development of chitosan-coated silicon nanoparticles (CSi QDs). Evaluation of the physicochemical and optical properties of the CSi QDs shows that they remain optically active in aqueous media. The chitosan coating renders silicon quantum dots stable in aqueous biological media and useful for biological applications such as cellular imaging with single and two photon excitation. The particles are also degradable when incubated at physiological temperature. These results open the door for a new generation of silicon quantum dots that may have a wide variety of applications derived from the flexibility of chitosan.

Semiconductor Quantum Dots And Rods For In Vivo Imaging And Cancer Phototherapy

Semiconductor Quantum Dots And Rods For In Vivo Imaging And Cancer Phototherapy PDF Author: Maoquan Chu
Publisher: #N/A
ISBN: 9813142901
Category : Technology & Engineering
Languages : en
Pages : 191

Book Description
Cancer is fast becoming one of the main causes of death worldwide. Unfortunately many cases are diagnosed at an advanced incurable stage, and these lives are usually lost. Early diagnosis and treatment are very important for increasing disease curability. In recent years, novel techniques for cancer diagnosis and therapy have been developed, and nanobiomedicine appears to show the most promising results.The application of nanotechnology to biology and medicine in cancer diagnosis is termed nanobiomedicine. Nanoparticles 1-100 nm in size usually have unique physical and/or chemical properties, and this has attracted great attention in the cancer research. Preparation and biomedical applications of the nanoparticles are key components in nanobiomedicine. Semiconductor nanocrystals, including quantum dots (QDs) and quantum rods (QRs), have been extensively investigated for drug delivery, biomedical imaging and tumor target therapy.In Semiconductor Quantum Dots and Rods for In Vivo Imaging and Cancer Phototherapy, the QD and QR optical properties, sentinel lymph node mapping, in vivo tumor target imaging, self-illuminating QDs for in vivo imaging, in vivo cancer photothermal therapy and photodynamic therapy, QD-graphene nanosheet, and QD-magnetic hybrid nanocomposites for bioimaging and cancer therapy are discussed. This book may interest under- and postgraduate students in the field of bioengineering (especially cancer phototherapy) and medical professions alike.

Development of Fluorescent Semi-conductor Nanocrystal Conjugates for in Vitro and in Vivo Imaging Applications

Development of Fluorescent Semi-conductor Nanocrystal Conjugates for in Vitro and in Vivo Imaging Applications PDF Author: Hee-Sun Han (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 169

Book Description
Semiconductor nanocrystals, also known as quantum dots (QDs), are promising imaging probes with characteristic optical properties: tunable bandgap from visible to infrared, narrow and symmetric emission features, broad absorption, high quantum yield (QY), excellent photostability, and a large two-photon absorption cross section. However, unlike other imaging probes, the surface ligands determine the solubility, stability, quantum yield (QY), biocompatibility, and derivatizability of QDs. Therefore, to use QDs for in vitro and in vivo imaging, QD ligands need to be elaborately engineered for each experiment. Single cell labeling in vivo requires extremely strict criteria for the QD conjugates to be used such as minimal nonspecific cell/serum binding, maintenance of high QY in complex in vivo environments, and compact size. The focus of this thesis is the synthesis of high quality QD conjugates that can be used for single molecule imaging in vivo and in vivo imaging studies that demonstrate the broad and powerful applicability of our new methods. We incorporated novel conjugation methods employing highly strained cycloolefins and a serum stable tetrazine derivative into newly developed polymeric imidazole ligands (PILs) to efficiently couple biomolecules on QDs. Unlike traditional conjugation methods, tetrazine-norbornene cycloaddition benefits from the non-interacting properties of the functional groups to the QD surface, and yields the high conjugation efficiencies on QDs. In addition, the rapid kinetics, absence of catalyst, and bio-orthogonality of the cycloaddition allowed us to achieve in situ conjugation of the norbornene-bearing QDs to tetrazine-bearing epidermal growth factor (EGF) proteins on the HeLa cell surface. On the in vivo front, we accomplished single endogenous cell imaging in live mice. The ability to target single cells using multiple biomarkers and track them for the extended periods of time allowed us to study the microenvironment of the endogenous hematopoietic stem cells (HSCs), which was not possible using conventional techniques engaging dye conjugated antibodies. Lastly, a new class of QD ligands containing betaine moieties was developed to reduce the size of QD conjugates, which we expect will be greatly beneficial for in vitro and in vivo targeting in dense environments. We successfully demonstrated functionalization of the sulfonate betaine poly imidazole ligands (SBPILs) with biomolecules, and the biocompatibility of SBPIL QDs both in vitro and in vivo.

Application of Quantum Dots in Biology and Medicine

Application of Quantum Dots in Biology and Medicine PDF Author: Puspendu Barik
Publisher: Springer Nature
ISBN: 9811931445
Category : Technology & Engineering
Languages : en
Pages : 274

Book Description
This book illustrates various applications of quantum dots (QDs) in the biomedical field and future perspectives. It first introduces the synthesis procedures and fundamental properties of QDs. In addition, the optical detection techniques and toxicologic reviews of QDs are presented. A focus of the book is also on the applications of QDs in cancer therapy, drug delivery, bio-sensing, and targeted molecular therapy. This book is exciting and valuable to a wide variety of readership communities (students, early-stage researchers, and scientists) in the various fields of biology and medicine.

Magnetic Quantum Dots for Bioimaging

Magnetic Quantum Dots for Bioimaging PDF Author: Amin Reza Rajabzadeh
Publisher: CRC Press
ISBN: 1000881032
Category : Technology & Engineering
Languages : en
Pages : 305

Book Description
Bioimaging is a sophisticated, non-invasive, and non-destructive technique for the direct visualization of biological processes. Highly luminescent quantum dots combined with magnetic nanoparticles or ions form an exciting class of new materials for bioimaging. These materials can be prepared in cost-effective ways and show unique optical behaviors. Magnetic Quantum Dots for Bioimaging explores leading research in the fabrication, characterization, properties, and application of magnetic quantum dots in bioimaging. Covers synthesis, properties, and bioimaging techniques Discusses modern manufacturing technologies and purification of magnetic quantum dots Explores thoroughly the properties and extent of magnetization to various imaging techniques Describes the biocompatibility, suitability, and toxic effects of magnetic quantum dots Reviews recent innovations, applications, opportunities, and future directions in magnetic quantum dots and their surface-decorated nanomaterials This comprehensive reference offers a road map of the use of these innovative materials for researchers, academics, technologists, and advanced students working in materials engineering and sensor technology.

Quantum Dots as Fluorescent Probes for in Vitro Cellular Imaging

Quantum Dots as Fluorescent Probes for in Vitro Cellular Imaging PDF Author: Milana Coorg Vasudev
Publisher:
ISBN:
Category :
Languages : en
Pages : 128

Book Description


Quantum Dots

Quantum Dots PDF Author: Rakshit Ameta
Publisher: Elsevier
ISBN: 0323858953
Category : Science
Languages : en
Pages : 393

Book Description
Quantum Dots: Fundamentals, Synthesis and Applications compiles key information, along with practical guidance on quantum dot synthesis and applications. Beginning with an introduction, Part One highlights such foundational knowledge as growth mechanisms, shape and composition, electrochemical properties, and production scale-up for quantum dots. Part Two goes on to provide practical guides to key chemical, physical and biological methods for the synthesis of quantum dots, with Part Three reviewing the application of quantum dots and a range of important use cases, including photocatalysis, energy cells and medical imaging. Drawing on the knowledge of its expert authors, this comprehensive book provides practical guidance for all those who already study, develop or use quantum dots in their work. Presents the foundational information needed to effectively understand and manipulate quantum dot properties Consolidates key methods of quantum dot synthesis in a single volume Reviews both current and future practical applications of quantum dots across a range of important fields

Investigating the Interaction of Semiconductor Quantum Dots with in Vivo and Cellular Environments to Determine Disposition and Risk

Investigating the Interaction of Semiconductor Quantum Dots with in Vivo and Cellular Environments to Determine Disposition and Risk PDF Author: Hans Christian Fischer
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Fluorescence Methods for Investigation of Living Cells and Microorganisms

Fluorescence Methods for Investigation of Living Cells and Microorganisms PDF Author: Natalia Grigoryeva
Publisher: BoD – Books on Demand
ISBN: 1839680393
Category : Cytofluorometry
Languages : en
Pages : 464

Book Description
Fluorescence methods play a leading role in the investigation of biological objects. They are the only non-destructive methods for investigating living cells and microorganisms in vivo. Using intrinsic and artificial fluorescence methods provides deep insight into mechanisms underlying physiological and biochemical processes. This book covers a wide range of modern methods involved in experimental biology. It illustrates the use of fluorescence microscopy and spectroscopy, confocal laser scanning microscopy, flow cytometry, delayed fluorescence, pulse-amplitude-modulation fluorometry, and fluorescent dye staining protocols. This book provides an overview of practical and theoretical aspects of fluorescence methods and their successful application in the investigation of static and dynamic processes in living cells and microorganisms.

Semiconductor Nanomaterials

Semiconductor Nanomaterials PDF Author: Challa S. S. R. Kumar
Publisher: John Wiley & Sons
ISBN: 3527321667
Category : Technology & Engineering
Languages : en
Pages : 499

Book Description
The book series Nanomaterials for the Life Sciences, provides an in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis and characterization strategies, structure-property relationships and biomedical applications. The series brings nanomaterials to the Life Scientists and life science to the Materials Scientists so that synergies are seen and developed to the fullest. Written by international experts of various facets of this exciting field of research, the series is aimed at scientists of the following disciplines: biology, chemistry, materials science, physics, bioengineering, and medicine, together with cell biology, biomedical engineering, pharmaceutical chemistry, and toxicology, both in academia and fundamental research as well as in pharmaceutical companies. VOLUME 6 - Semiconductor Nanomaterials