'In Silico' Simulation of Biological Processes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download 'In Silico' Simulation of Biological Processes PDF full book. Access full book title 'In Silico' Simulation of Biological Processes by Gregory R. Bock. Download full books in PDF and EPUB format.

'In Silico' Simulation of Biological Processes

'In Silico' Simulation of Biological Processes PDF Author: Gregory R. Bock
Publisher: John Wiley & Sons
ISBN: 0470857900
Category : Science
Languages : en
Pages : 270

Book Description
Over recent decades vast amounts of biological data have been accumulated. However, it is becoming increasingly difficult to apply traditional theoretical methods to the formulation of coherent pictures of cell and organ function because it is no longer possible for a human theorist to integrate all of the available information. Instead, computer technologies must now be used to perform this integration. This book brings together contributions from many different fields to summarize the current status of computer-assisted modelling of biological processes. The initial chapters deal with fundamental developments in hardware, software and mathematics that underlie current approaches to biological modelling. Next, different approaches to collating data on gene structure and function are presented. These databases form a vital resource for any investigator trying to construct an integrated picture of particular biological systems. Cell signalling systems form a particularly complicated aspect of all cellular function and are important both in the understanding of basic cellular processes and in selecting targets for drugs. Recent approaches to integrating data on cell signalling into computer models are covered. Further chapters build on these approaches to show how computerized models of intact cells can be developed. Finally, approaches to the computer modelling of whole organs such as the heart are presented. The role of computer modelling in drug design is the subject of the final chapter and is also touched on throughout the discussions.

'In Silico' Simulation of Biological Processes

'In Silico' Simulation of Biological Processes PDF Author: Gregory R. Bock
Publisher: John Wiley & Sons
ISBN: 0470857900
Category : Science
Languages : en
Pages : 270

Book Description
Over recent decades vast amounts of biological data have been accumulated. However, it is becoming increasingly difficult to apply traditional theoretical methods to the formulation of coherent pictures of cell and organ function because it is no longer possible for a human theorist to integrate all of the available information. Instead, computer technologies must now be used to perform this integration. This book brings together contributions from many different fields to summarize the current status of computer-assisted modelling of biological processes. The initial chapters deal with fundamental developments in hardware, software and mathematics that underlie current approaches to biological modelling. Next, different approaches to collating data on gene structure and function are presented. These databases form a vital resource for any investigator trying to construct an integrated picture of particular biological systems. Cell signalling systems form a particularly complicated aspect of all cellular function and are important both in the understanding of basic cellular processes and in selecting targets for drugs. Recent approaches to integrating data on cell signalling into computer models are covered. Further chapters build on these approaches to show how computerized models of intact cells can be developed. Finally, approaches to the computer modelling of whole organs such as the heart are presented. The role of computer modelling in drug design is the subject of the final chapter and is also touched on throughout the discussions.

In Silico Systems Biology

In Silico Systems Biology PDF Author: Maria Victoria Schneider
Publisher: Humana Press
ISBN: 9781627034494
Category : Science
Languages : en
Pages : 0

Book Description
Systems biology can now be considered an established and fundamental field in life sciences. It has moved from the identification of molecular 'parts lists' for living organisms towards synthesising information from different 'omics'-based approaches to generate and test new hypotheses about how biological systems work. In In Silico Systems Biology: Methods and Protocols, expert researchers in the field detail a practical set of chapters based often on actual materials used and develop for face-to-face training with examples and case studies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step workflows, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, In Silico Systems Biology: Methods and Protocols seeks to aid scientists in the further study of network biology and mathematical models of biological systems.

In Silico Systems Biology

In Silico Systems Biology PDF Author: Maria Victoria Schneider
Publisher: Humana
ISBN: 9781493962952
Category : Science
Languages : en
Pages : 0

Book Description
Systems biology can now be considered an established and fundamental field in life sciences. It has moved from the identification of molecular 'parts lists' for living organisms towards synthesising information from different 'omics'-based approaches to generate and test new hypotheses about how biological systems work. In In Silico Systems Biology: Methods and Protocols, expert researchers in the field detail a practical set of chapters based often on actual materials used and develop for face-to-face training with examples and case studies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step workflows, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, In Silico Systems Biology: Methods and Protocols seeks to aid scientists in the further study of network biology and mathematical models of biological systems.

Modeling and Simulation of Biological Processes

Modeling and Simulation of Biological Processes PDF Author:
Publisher:
ISBN: 9789736208652
Category :
Languages : en
Pages : 99

Book Description


Simulation of Biological Processes by Analog and Digital Computers

Simulation of Biological Processes by Analog and Digital Computers PDF Author: Liang-tseng Fan
Publisher:
ISBN:
Category :
Languages : en
Pages : 120

Book Description


In Silico Drug Discovery and Design

In Silico Drug Discovery and Design PDF Author: Claudio N. Cavasotto
Publisher: CRC Press
ISBN: 1482217856
Category : Medical
Languages : en
Pages : 558

Book Description
In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications provides a comprehensive, unified, and in-depth overview of the current methodological strategies in computer-aided drug discovery and design. Its main aims are to introduce the theoretical framework and algorithms, discuss the range of validity, strengths and limita

In Silico Chemistry and Biology

In Silico Chemistry and Biology PDF Author: Girish Kumar Gupta
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110492458
Category : Science
Languages : en
Pages : 274

Book Description
In Silico Chemistry and Biology: Current and Future Prospects provides a compact overview on recent advances in this highly dynamic branch of chemistry. Various methods of protein modelling and computer-assisted drug design are presented, including fragment- and ligand-based approaches. Many successful practical applications of these techniques are demonstrated. The authors also look to the future and describe the main challenges of the field.

Translational Systems Biology: Concepts and Practice for the Future of Biomedical Research

Translational Systems Biology: Concepts and Practice for the Future of Biomedical Research PDF Author: Yoram Vodovotz
Publisher: Academic Press
ISBN: 9780128101476
Category : Computers
Languages : en
Pages : 178

Book Description
Are we satisfied with the rate of drug development? Are we happy with the drugs that come to market? Are we getting our money s worth in spending for basic biomedical research? In Translational Systems Biology, Drs. Yoram Vodovotz and Gary An address these questions by providing a foundational description the barriers facing biomedical research today and the immediate future, and how these barriers could be overcome through the adoption of a robust and scalable approach that will form the underpinning of biomedical research for the future. By using a combination of essays providing the intellectual basis of the Translational Dilemma and reports of examples in the study of inflammation, the content of Translational Systems Biology will remain relevant as technology and knowledge advances bring broad translational applicability to other diseases. Translational systems biology is an integrated, multi-scale, evidence-based approach that combines laboratory, clinical and computational methods with an explicit goal of developing effective means of control of biological processes for improving human health and rapid clinical application. This comprehensive approach to date has been utilized for in silico studies of sepsis, trauma, hemorrhage, and traumatic brain injury, acute liver failure, wound healing, and inflammation. Provides an explicit, reasoned, and systematic approach to dealing with the challenges of translational science across disciplines Establishes the case for including computational modeling at all stages of biomedical research and healthcare delivery, from early pre-clinical studies to long-term care, by clearly delineating efficiency and costs saving important to business investment Guides readers on how to communicate across domains and disciplines, particularly between biologists and computational researchers, to effectively develop multi- and trans-disciplinary research teams "

Stochastic Models for In-silico Event-based Biological Network Simulation

Stochastic Models for In-silico Event-based Biological Network Simulation PDF Author: Preetam Ghosh
Publisher: ProQuest
ISBN: 9780549319641
Category : Bioinformatics
Languages : en
Pages :

Book Description
The multi-scale biological system model is a new research direction to capture the dynamic measurements of complex biological systems. The current statistical thermodynamic models can not scale to this challenge due to the explosion of state-spaces of the system, where a biological organ may have billions of cells, each with millions of molecule types and each type may have a few million molecules. We seek to propose a phenomenological theory that will require a smaller number of state variables to address this multi-scaling problem. Discrete Markov statistical process is used to understand the system dynamics in the networking community for a long time. In this dissertation, we focus more specifically on a composite system by combining the state variables in the time-space domain as events, and determine the immediate dynamics between the events by using statistical analysis or simulation methods. In our approach the space-time behavior of the cell dynamics is captured by discrete state variables, where an event is a combined process of a large number of state transitions between a set of state variables. The execution time of these state transitions to manifest the event outcome is a random variable called event-holding time. The underlying assumption is that it will be possible to segregate the complete system state-space into a disjoint set of independent events and events can be executed simultaneously without any interaction once the execution conditions are satisfied (removal of resource bottleneck, collision). In this dissertation, we present the event-time models for some biological functions that will be incorporated in the discrete-event based stochastic simulator. In particular, we present analytical models for the molecular transport event in cells considering charged/non-charged macromolecules. We show, that molecular transport event completion time can be approximated by an exponential distribution. Next we present stochastic models for biochemical reactions in the cell (that can be extended to reactions occurring in the cell cytoplasm, membrane or nucleus). We show that the reaction completion time follows an exponential distribution when one of the reactant molecules enter the cell one at a time, whereas, it follows a gamma distribution when a batch of the reactant molecules enter the cell. We also present stochastic models for the protein-DNA binding and protein-ligand docking events and show that both these events have an exponentially distributed event completion time. We also validate each of the models presented in the dissertation with experimental findings reported in the literature. Finally, we present a markov chain based stochastic biochemical system simulator which can give us the dynamics of more complex events and can be used to improve the scalability of the discrete-event based stochastic simulator. We propose to successfully demonstrate this technique by modeling the complete dynamics of one Salmonella cell.

Systems Biology

Systems Biology PDF Author: Aleš Prokop
Publisher: Springer Science & Business Media
ISBN: 9400768036
Category : Medical
Languages : en
Pages : 569

Book Description
Growth in the pharmaceutical market has slowed down – almost to a standstill. One reason is that governments and other payers are cutting costs in a faltering world economy. But a more fundamental problem is the failure of major companies to discover, develop and market new drugs. Major drugs losing patent protection or being withdrawn from the market are simply not being replaced by new therapies – the pharmaceutical market model is no longer functioning effectively and most pharmaceutical companies are failing to produce the innovation needed for success. This multi-authored new book looks at a vital strategy which can bring innovation to a market in need of new ideas and new products: Systems Biology (SB). Modeling is a significant task of systems biology. SB aims to develop and use efficient algorithms, data structures, visualization and communication tools to orchestrate the integration of large quantities of biological data with the goal of computer modeling. It involves the use of computer simulations of biological systems, such as the networks of metabolites comprise signal transduction pathways and gene regulatory networks to both analyze and visualize the complex connections of these cellular processes. SB involves a series of operational protocols used for performing research, namely a cycle composed of theoretical, analytic or computational modeling to propose specific testable hypotheses about a biological system, experimental validation, and then using the newly acquired quantitative description of cells or cell processes to refine the computational model or theory.