The Higgs Boson PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Higgs Boson PDF full book. Access full book title The Higgs Boson by Scientific American Editors. Download full books in PDF and EPUB format.

The Higgs Boson

The Higgs Boson PDF Author: Scientific American Editors
Publisher: Scientific American
ISBN: 1466824131
Category : Science
Languages : en
Pages : 467

Book Description
The Higgs Boson: Searching for the God Particle by the Editors of Scientific American Updated 2017 Edition! For the fifth anniversary of one of the biggest discoveries in physics, we’ve updated this eBook to include our continuing analysis of the discovery, of the questions it answers and those it raises. As the old adage goes, where there’s smoke, there’s fire. Where there is effect, there must be cause. The planet Neptune was found in 1846 because the mathematics of Newton's laws, when applied to the orbit of Uranus, said some massive body had to be there. Astronomers eventually found it, using the best telescopes available to peer into the sky. This same logic is applied to the search for the Higgs boson. One consequence of the prevailing theory of physics, called the Standard Model, is that there has to be some field that gives particles their particular masses. With that there has to be a corresponding particle, made by creating waves in the field, and this is the Higgs boson, the so-called God particle. This eBook chronicles the search – and demonstrates the power of a good theory. Based on the Standard Model, physicists believed something had to be there, but it wasn't until the Large Hadron Collider was built that anyone could see evidence of the Higgs – and finally in July 2012, they did. A Higgs-like particle was found near the energies scientists expected to find it. Now, armed with better evidence and better questions, the scientific process continues. This eBook gathers the best reporting and analysis from Scientific American to explain that process – the theories, the search, the ongoing questions. In essence, everything you need to know to separate Higgs from hype.

The Higgs Boson

The Higgs Boson PDF Author: Scientific American Editors
Publisher: Scientific American
ISBN: 1466824131
Category : Science
Languages : en
Pages : 467

Book Description
The Higgs Boson: Searching for the God Particle by the Editors of Scientific American Updated 2017 Edition! For the fifth anniversary of one of the biggest discoveries in physics, we’ve updated this eBook to include our continuing analysis of the discovery, of the questions it answers and those it raises. As the old adage goes, where there’s smoke, there’s fire. Where there is effect, there must be cause. The planet Neptune was found in 1846 because the mathematics of Newton's laws, when applied to the orbit of Uranus, said some massive body had to be there. Astronomers eventually found it, using the best telescopes available to peer into the sky. This same logic is applied to the search for the Higgs boson. One consequence of the prevailing theory of physics, called the Standard Model, is that there has to be some field that gives particles their particular masses. With that there has to be a corresponding particle, made by creating waves in the field, and this is the Higgs boson, the so-called God particle. This eBook chronicles the search – and demonstrates the power of a good theory. Based on the Standard Model, physicists believed something had to be there, but it wasn't until the Large Hadron Collider was built that anyone could see evidence of the Higgs – and finally in July 2012, they did. A Higgs-like particle was found near the energies scientists expected to find it. Now, armed with better evidence and better questions, the scientific process continues. This eBook gathers the best reporting and analysis from Scientific American to explain that process – the theories, the search, the ongoing questions. In essence, everything you need to know to separate Higgs from hype.

The God Particle

The God Particle PDF Author: Leon M. Lederman
Publisher: Houghton Mifflin Harcourt
ISBN: 9780618711680
Category : Science
Languages : en
Pages : 452

Book Description
A fascinating tour of particle physics from Nobel Prize winner Leon Lederman. At the root of particle physics is an invincible sense of curiosity. Leon Lederman embraces this spirit of inquiry as he moves from the Greeks' earliest scientific observations to Einstein and beyond to chart this unique arm of scientific study. His survey concludes with the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe, quarks and all--it's the dogged pursuit of this almost mystical entity that inspires Lederman's witty and accessible history.

Discovery Of The Higgs Boson

Discovery Of The Higgs Boson PDF Author: Aleandro Nisati
Publisher: World Scientific
ISBN: 981442546X
Category : Science
Languages : en
Pages : 470

Book Description
The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.

In Search of the Standard Model Higgs Boson

In Search of the Standard Model Higgs Boson PDF Author: Ross I. Berbeco
Publisher:
ISBN:
Category :
Languages : en
Pages : 240

Book Description


Search for the Standard Model Higgs Boson in the H → ZZ → l + l - qq Decay Channel at CMS

Search for the Standard Model Higgs Boson in the H → ZZ → l + l - qq Decay Channel at CMS PDF Author: Francesco Pandolfi
Publisher: Springer Science & Business Media
ISBN: 3319009036
Category : Science
Languages : en
Pages : 137

Book Description
The theoretical foundations of the Standard Model of elementary particles relies on the existence of the Higgs boson, a particle which has been revealed for the first time by the experiments run at the Large Hadron Collider (LHC) in 2012. As the Higgs boson is an unstable particle, its search strategies were based on its decay products. In this thesis, Francesco Pandolfi conducted a search for the Higgs boson in the H → ZZ → l + l - qq Decay Channel with 4.6 fb -1 of 7 TeV proton-proton collision data collected by the Compact Muon Solenoid (CMS) experiment. The presence of jets in the final state poses a series of challenges to the experimenter: both from a technical point of view, as jets are complex objects and necessitate of ad-hoc reconstruction techniques, and from an analytical one, as backgrounds with jets are copious at hadron colliders, therefore analyses must obtain high degrees of background rejection in order to achieve competitive sensitivity. This is accomplished by following two directives: the use of an angular likelihood discriminant, capable of discriminating events likely to originate from the decay of a scalar boson from non-resonant backgrounds, and by using jet parton flavor tagging, selecting jets compatible with quark hadronization and discarding jets more likely to be initiated by gluons. The events passing the selection requirements in 4.6 fb -1 of data collected by the CMS detector are examined, in the search of a possible signal compatible with the decay of a heavy Higgs boson. The thesis describes the statistical tools and the results of this analysis. This work is a paradigm for studies of the Higgs boson with final states with jets. The non-expert physicists will enjoy a complete and eminently readable description of a proton-proton collider analysis. At the same time, the expert reader will learn the details of the searches done with jets at CMS.

The Standard Model Higgs Boson

The Standard Model Higgs Boson PDF Author: Martin B. Einhorn
Publisher: North Holland
ISBN:
Category : Science
Languages : en
Pages : 408

Book Description
Volume 8.

A Search for the Standard Model Higgs Boson in the Process ZH {u2192} L+l-b$\bar{b}$ in 4.1 Fb-1 of CDF II Data

A Search for the Standard Model Higgs Boson in the Process ZH {u2192} L+l-b$\bar{b}$ in 4.1 Fb-1 of CDF II Data PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 204

Book Description
The standard model of particle physics provides a detailed description of a universe in which all matter is composed of a small number of fundamental particles, which interact through the exchange of force - carrying gauge bosons (the photon, W ±, Z and gluons). The organization of the matter and energy in this universe is determined by the effects of three forces; the strong, weak, and electromagnetic. The weak and electromagnetic forces are the low energy manifestations of a single electro-weak force, while the strong force binds quarks into protons and neutrons. The standard model does not include gravity, as the effect of this force on fundamental particles is negligible. Four decades of experimental tests, spanning energies from a few electron-volts (eV) up to nearly two TeV, confirm that the universe described by the standard model is a reasonable approximation of our world. For example, experiments have confirmed the existence of the top quark, the W± and the Z bosons, as predicted by the standard model. The latest experimental averages for the masses of the top quark, W± and Z are respectively 173.1 ± 0.6(stat.) ± 1.1(syst.), 80.399 ± 0.023 and 91.1876 ± 0.0021 GeV/c2. The SM is a gauge field theory of zero mass particles. However, the SM is able to accommodate particles with non-zero mass through the introduction of a theoretical Higgs field which permeates all of space. Fermions gain mass through interactions with this field, while the longitudinal components of the massive W± and Z are the physical manifestations of the field itself. Introduction of the Higgs field, directly leads to the predicted existence of an additional particle, the Higgs boson. The Higgs boson is the only particle of the standard model that has not been observed, and is the only unconfirmed prediction of the theory. The standard model describes the properties of the Higgs boson in terms of its mass, which is a free parameter in the theory. Experimental evidence suggests that the Higgs mass has a value between 114.4 and 186 GeV/c2. Particles with a mass in this range can be produced in collisions of less massive particles accelerated to near the speed of light. Currently, one of only a few machines capable of achieving collision energies large enough to potentially produce a standard model Higgs boson is the Tevatron proton-antiproton collider located at Fermi National Accelerator Laboratory in Batavia, Illinois. This dissertation describes the effort to observe the standard model Higgs in Tevatron collisions recorded by the Collider Detector at Fermilab (CDF) II experiment in the ZH →l+l-b$ar{b}$ production and decay channel. In this process, the Higgs is produced along with a Z boson which decays to a pair of electrons or muons (Z →l+l-), while the Higgs decays to a bottom anti-bottom quark pair (H → b$ar{b}$). A brief overview of the standard model and Higgs theory is presented in Chapter 2. Chapter 3 explores previous searches for the standard model Higgs at the Tevatron and elsewhere. The search presented in this dissertation expands upon the techniques and methods developed in previous searches. The fourth chapter contains a description of the Tevatron collider and the CDF II detector. The scope of the discussion in Chapter 4 is limited to the experimental components relevant to the current ZH →l+l-b$ar{b}$ search. Chapter 5 presents the details of object reconstruction; the methods used to convert detector signals into potential electrons, muons or quarks. Chapter six describes the data sample studied for the presence of a ZH →l+l-b$ar{b}$ signal and details the techniques used to model the data. The model accounts for both signal and non-signal processes (backgrounds) which are expected to contribute to the observed event sample. Chapters 7 and 8 summarize the event selectio...

A Search for the Standard Model Higgs Boson in the Process $ZH \rightarrow \ell^{+} \ell^{-} B \bar{b}$ in $4.1\unit{fb^{-1}}$ OF CDF~II DATA}

A Search for the Standard Model Higgs Boson in the Process $ZH \rightarrow \ell^{+} \ell^{-} B \bar{b}$ in $4.1\unit{fb^{-1}}$ OF CDF~II DATA} PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 204

Book Description
The standard model of particle physics provides a detailed description of a universe in which all matter is composed of a small number of fundamental particles, which interact through the exchange of force - carrying gauge bosons (the photon, W{sup ±}, Z and gluons). The organization of the matter and energy in this universe is determined by the effects of three forces; the strong, weak, and electromagnetic. The weak and electromagnetic forces are the low energy manifestations of a single electro-weak force, while the strong force binds quarks into protons and neutrons. The standard model does not include gravity, as the effect of this force on fundamental particles is negligible. Four decades of experimental tests, spanning energies from a few electron-volts (eV) up to nearly two TeV, confirm that the universe described by the standard model is a reasonable approximation of our world. For example, experiments have confirmed the existence of the top quark, the W{sup ±} and the Z bosons, as predicted by the standard model. The latest experimental averages for the masses of the top quark, W{sup ±} and Z are respectively 173.1 ± 0.6(stat.) {+-} 1.1(syst.), 80.399 {+-} 0.023 and 91.1876 {+-} 0.0021 GeV/c2. The SM is a gauge field theory of zero mass particles. However, the SM is able to accommodate particles with non-zero mass through the introduction of a theoretical Higgs field which permeates all of space. Fermions gain mass through interactions with this field, while the longitudinal components of the massive W{sup {+-}} and Z are the physical manifestations of the field itself. Introduction of the Higgs field, directly leads to the predicted existence of an additional particle, the Higgs boson. The Higgs boson is the only particle of the standard model that has not been observed, and is the only unconfirmed prediction of the theory. The standard model describes the properties of the Higgs boson in terms of its mass, which is a free parameter in the theory. Experimental evidence suggests that the Higgs mass has a value between 114.4 and 186 GeV/c2. Particles with a mass in this range can be produced in collisions of less massive particles accelerated to near the speed of light. Currently, one of only a few machines capable of achieving collision energies large enough to potentially produce a standard model Higgs boson is the Tevatron proton-antiproton collider located at Fermi National Accelerator Laboratory in Batavia, Illinois. This dissertation describes the effort to observe the standard model Higgs in Tevatron collisions recorded by the Collider Detector at Fermilab (CDF) II experiment in the ZH --> ll−b{bar b} production and decay channel. In this process, the Higgs is produced along with a Z boson which decays to a pair of electrons or muons (Z --> ll−), while the Higgs decays to a bottom anti-bottom quark pair (H --> b{bar b}). A brief overview of the standard model and Higgs theory is presented in Chapter 2. Chapter 3 explores previous searches for the standard model Higgs at the Tevatron and elsewhere. The search presented in this dissertation expands upon the techniques and methods developed in previous searches. The fourth chapter contains a description of the Tevatron collider and the CDF II detector. The scope of the discussion in Chapter 4 is limited to the experimental components relevant to the current ZH --> l+l−b{bar b} search. Chapter 5 presents the details of object reconstruction; the methods used to convert detector signals into potential electrons, muons or quarks. Chapter six describes the data sample studied for the presence of a ZH --> l+l−b{bar b} signal and details the techniques used to model the data. The model accounts for both signal and non-signal processes (backgrounds) which are expected to contribute to the observed event sample. Chapters 7 and 8 summarize the event selection applied to isolate ZH --> l+l−b{bar b} candidate events from the data sample, and the advanced techniques employed to maximize the separation of the signal from background processes. Chapters 9 and 10 present the systematic uncertainties affecting our modeling of the data sample and the results of the search. Chapter 11 presents a discussion of ZH --> l+l−b{bar b} in the context of the overall Tevatron efforts to observe a standard model Higgs signal.

Search for the Higgs Boson

Search for the Higgs Boson PDF Author: John V. Lee
Publisher: Nova Publishers
ISBN: 9781594548611
Category : Science
Languages : en
Pages : 158

Book Description
The Higgs boson is an undiscovered elementary particle, thought to be a vital piece of the closely fitting jigsaw of particle physics. Like all particles, it has wave properties akin to those ripples on the surface of a pond which has been disturbed; indeed, only when the ripples travel as a well defined group is it sensible to speak of a particle at all. In quantum language the analogue of the water surface which carries the waves is called a field. Each type of particle has its own corresponding field. The Higgs field is a particularly simple one -- it has the same properties viewed from every direction, and in important respects in indistinguishable from empty space. Thus physicists conceive of the Higgs field being "switched on", pervading all of space and endowing it with "grain" like that of a plank of wood. The direction of the grain in undetectable, and only becomes important once the Higgs' interactions with other particles are taken into account. for instance, particles call vector bosons can travel with the grain, in which case they move easily for large distances and may be observed as photons - that is, particles of light that we can see or record using a camera; or against, in which case their effective range is much shorter, and we call them W or Z particles. These play a central role in the physics of nuclear reactions, such as those occurring in the core of the sun. The Higgs field enables us to view these apparently unrelated phenomenon as two sides of the same coin; both may be described in terms of the properties of the same vector bosons. When particles of matter such as electrons or quarks (elementary constituents of protons and neutrons, which in turn constitute the atomic nucleus) travel through the grain, they are constantly flipped "head-over-heels". this forces them to move more slowly than their natural speed, that of light, by making them heavy.

Search for the Standard Model Higgs Boson in the Decay Mode H{u2192} W+W-{u2192} L+vl-v

Search for the Standard Model Higgs Boson in the Decay Mode H{u2192} W+W-{u2192} L+vl-v PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 196

Book Description
The question of the nature and principles of the universe and our place in it is the driving force of science since Mesopotamian astronomers glanced for the first time at the starry sky and Greek atomism has been formulated. During the last hundred years modern science was able to extend its knowledge tremendously, answering many questions, opening entirely new fields but as well raising many new questions. Particularly Astronomy, Astroparticle Physics and Particle Physics lead the race to answer these fundamental and ancient questions experimentally. Today it is known that matter consists of fermions, the quarks and leptons. Four fundamental forces are acting between these particles, the electromagnetic, the strong, the weak and the gravitational force. These forces are mediated by particles called bosons. Our confirmed knowledge of particle physics is based on these particles and the theory describing their dynamics, the Standard Model of Particles. Many experimental measurements show an excellent agreement between observation and theory but the origin of the particle masses and therefore the electroweak symmetry breaking remains unexplained. The mechanism proposed to solve this issue involves the introduction of a complex doublet of scalar fields which generates the masses of elementary particles via their mutual interactions. This Higgs mechanism also gives rise to a single neutral scalar boson with an unpredicted mass, the Higgs boson. During the last twenty years several experiments have searched for the Higgs boson but so far it escaped direct observation. Nevertheless these studies allow to further constrain its mass range. The last experimental limits on the Higgs mass have been set in 2001 at the LEP collider, an electron positron machine close to Geneva, Switzerland. The lower limit set on the Higgs boson mass is mH > 114.4 GeV/c2 and remained for many years the last experimental constraint on the Standard Model Higgs Boson due to the shutdown of the LEP collider and the experimental challenges at hadron machines as the Tevatron. This thesis was performed using data from the D0 detector located at the Fermi National Accelerator Laboratory in Batavia, IL. Final states containing two electrons or a muon and a tau in combination with missing transverse energy were studied to search for the Standard Model Higgs boson, utilizing up to 4.2 fb-1 of integrated luminosity. In 2008 the CDF and D0 experiments in a combined effort were able to reach for the first time at a hadron collider the sensitivity to further constrain the possible Standard Model Higgs boson mass range. The research conducted for this thesis played a pivotal role in this effort. Improved methods for lepton identification, background separation, assessment of systematic uncertainties and new decay channels have been studied, developed and utilized. Along with similar efforts at the CDF experiment these improvements led finally the important result of excluding the presence of a Standard Model Higgs boson in a mass range of mH = 160-170 GeV/c2 at 95% Confidence Level. Many of the challenges and methods found in the present analysis will probably in a similar way be ingredients of a Higgs boson evidence or discovery in the near future, either at the Tevatron or more likely at the soon starting Large Hadron Collider (LHC). Continuing to pursue the Higgs boson we are looking forward to many exciting results at the Tevatron and soon at the LHC. In Chapter 2 an introduction to the Standard Model of particle physics and the Higgs mechanism is given, followed by a brief outline of existing theoretical and experimental constraints on the Higgs boson mass before summarizing the Higgs boson production modes. Chapter 3 gives an overview of the experimental setup. This is followed by a description of the reconstruction of the objects produced in proton-antiproton collisions in Chapter 4 and the necessary calorim...