Numerical Methods for Delay Differential Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Numerical Methods for Delay Differential Equations PDF full book. Access full book title Numerical Methods for Delay Differential Equations by Alfredo Bellen. Download full books in PDF and EPUB format.

Numerical Methods for Delay Differential Equations

Numerical Methods for Delay Differential Equations PDF Author: Alfredo Bellen
Publisher: OUP Oxford
ISBN: 0191523135
Category : Mathematics
Languages : en
Pages : 410

Book Description
The main purpose of the book is to introduce the readers to the numerical integration of the Cauchy problem for delay differential equations (DDEs). Peculiarities and differences that DDEs exhibit with respect to ordinary differential equations are preliminarily outlined by numerous examples illustrating some unexpected, and often surprising, behaviours of the analytical and numerical solutions. The effect of various kinds of delays on the regularity of the solution is described and some essential existence and uniqueness results are reported. The book is centered on the use of Runge-Kutta methods continuously extended by polynomial interpolation, includes a brief review of the various approaches existing in the literature, and develops an exhaustive error and well-posedness analysis for the general classes of one-step and multistep methods. The book presents a comprehensive development of continuous extensions of Runge-Kutta methods which are of interest also in the numerical treatment of more general problems such as dense output, discontinuous equations, etc. Some deeper insight into convergence and superconvergence of continuous Runge-Kutta methods is carried out for DDEs with various kinds of delays. The stepsize control mechanism is also developed on a firm mathematical basis relying on the discrete and continuous local error estimates. Classical results and a unconventional analysis of "stability with respect to forcing term" is reviewed for ordinary differential equations in view of the subsequent numerical stability analysis. Moreover, an exhaustive description of stability domains for some test DDEs is carried out and the corresponding stability requirements for the numerical methods are assessed and investigated. Alternative approaches, based on suitable formulation of DDEs as partial differential equations and subsequent semidiscretization are briefly described and compared with the classical approach. A list of available codes is provided, and illustrative examples, pseudo-codes and numerical experiments are included throughout the book.

Numerical Methods for Delay Differential Equations

Numerical Methods for Delay Differential Equations PDF Author: Alfredo Bellen
Publisher: OUP Oxford
ISBN: 0191523135
Category : Mathematics
Languages : en
Pages : 410

Book Description
The main purpose of the book is to introduce the readers to the numerical integration of the Cauchy problem for delay differential equations (DDEs). Peculiarities and differences that DDEs exhibit with respect to ordinary differential equations are preliminarily outlined by numerous examples illustrating some unexpected, and often surprising, behaviours of the analytical and numerical solutions. The effect of various kinds of delays on the regularity of the solution is described and some essential existence and uniqueness results are reported. The book is centered on the use of Runge-Kutta methods continuously extended by polynomial interpolation, includes a brief review of the various approaches existing in the literature, and develops an exhaustive error and well-posedness analysis for the general classes of one-step and multistep methods. The book presents a comprehensive development of continuous extensions of Runge-Kutta methods which are of interest also in the numerical treatment of more general problems such as dense output, discontinuous equations, etc. Some deeper insight into convergence and superconvergence of continuous Runge-Kutta methods is carried out for DDEs with various kinds of delays. The stepsize control mechanism is also developed on a firm mathematical basis relying on the discrete and continuous local error estimates. Classical results and a unconventional analysis of "stability with respect to forcing term" is reviewed for ordinary differential equations in view of the subsequent numerical stability analysis. Moreover, an exhaustive description of stability domains for some test DDEs is carried out and the corresponding stability requirements for the numerical methods are assessed and investigated. Alternative approaches, based on suitable formulation of DDEs as partial differential equations and subsequent semidiscretization are briefly described and compared with the classical approach. A list of available codes is provided, and illustrative examples, pseudo-codes and numerical experiments are included throughout the book.

Feedback Systems

Feedback Systems PDF Author: Karl Johan Åström
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages :

Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory

A Primer on PDEs

A Primer on PDEs PDF Author: Sandro Salsa
Publisher: Springer Science & Business Media
ISBN: 8847028620
Category : Mathematics
Languages : en
Pages : 494

Book Description
This book is designed as an advanced undergraduate or a first-year graduate course for students from various disciplines like applied mathematics, physics, engineering. It has evolved while teaching courses on partial differential equations during the last decade at the Politecnico of Milan. The main purpose of these courses was twofold: on the one hand, to train the students to appreciate the interplay between theory and modelling in problems arising in the applied sciences and on the other hand to give them a solid background for numerical methods, such as finite differences and finite elements.

Continuous System Modeling

Continuous System Modeling PDF Author: François E. Cellier
Publisher: Springer Science & Business Media
ISBN: 1475739222
Category : Technology & Engineering
Languages : en
Pages : 775

Book Description
Modeling and Simulation have become endeavors central to all disciplines of science and engineering. They are used in the analysis of physical systems where they help us gain a better understanding of the functioning of our physical world. They are also important to the design of new engineering systems where they enable us to predict the behavior of a system before it is ever actually built. Modeling and simulation are the only techniques available that allow us to analyze arbitrarily non-linear systems accurately and under varying experimental conditions. Continuous System Modeling introduces the student to an important subclass of these techniques. They deal with the analysis of systems described through a set of ordinary or partial differential equations or through a set of difference equations. This volume introduces concepts of modeling physical systems through a set of differential and/or difference equations. The purpose is twofold: it enhances the scientific understanding of our physical world by codifying (organizing) knowledge about this world, and it supports engineering design by allowing us to assess the consequences of a particular design alternative before it is actually built. This text has a flavor of the mathematical discipline of dynamical systems, and is strongly oriented towards Newtonian physical science.

Mathematical Modeling, Simulation and Optimization for Power Engineering and Management

Mathematical Modeling, Simulation and Optimization for Power Engineering and Management PDF Author: Simone Göttlich
Publisher: Springer Nature
ISBN: 3030627322
Category : Technology & Engineering
Languages : en
Pages : 333

Book Description
This edited monograph offers a summary of future mathematical methods supporting the recent energy sector transformation. It collects current contributions on innovative methods and algorithms. Advances in mathematical techniques and scientific computing methods are presented centering around economic aspects, technical realization and large-scale networks. Over twenty authors focus on the mathematical modeling of such future systems with careful analysis of desired properties and arising scales. Numerical investigations include efficient methods for the simulation of possibly large-scale interconnected energy systems and modern techniques for optimization purposes to guarantee stable and reliable future operations. The target audience comprises research scientists, researchers in the R&D field, and practitioners. Since the book highlights possible future research directions, graduate students in the field of mathematical modeling or electrical engineering may also benefit strongly.

The Finite Element Method Set

The Finite Element Method Set PDF Author: O. C. Zienkiewicz
Publisher: Elsevier
ISBN: 0080531679
Category : Technology & Engineering
Languages : en
Pages : 1863

Book Description
The sixth editions of these seminal books deliver the most up to date and comprehensive reference yet on the finite element method for all engineers and mathematicians. Renowned for their scope, range and authority, the new editions have been significantly developed in terms of both contents and scope. Each book is now complete in its own right and provides self-contained reference; used together they provide a formidable resource covering the theory and the application of the universally used FEM. Written by the leading professors in their fields, the three books cover the basis of the method, its application to solid mechanics and to fluid dynamics.* This is THE classic finite element method set, by two the subject's leading authors * FEM is a constantly developing subject, and any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in these books * Fully up-to-date; ideal for teaching and reference

Languages and Tools for Hybrid Systems Design

Languages and Tools for Hybrid Systems Design PDF Author: Luca P. Carloni
Publisher: Now Publishers Inc
ISBN: 193301928X
Category : Computational intelligence
Languages : en
Pages : 208

Book Description
Languages and Tools for Hybrid Systems Design is intended to equip researchers, application developers and managers with key references and resource material for the successful development of hybrid systems

Elementary Numerical Analysis

Elementary Numerical Analysis PDF Author: S. D. Conte
Publisher: SIAM
ISBN: 1611975204
Category : Science
Languages : en
Pages : 474

Book Description
This book provides a thorough and careful introduction to the theory and practice of scientific computing at an elementary, yet rigorous, level, from theory via examples and algorithms to computer programs. The original FORTRAN programs have been rewritten in MATLAB and now appear in a new appendix and online, offering a modernized version of this classic reference for basic numerical algorithms.

Fuzzy Partial Differential Equations and Relational Equations

Fuzzy Partial Differential Equations and Relational Equations PDF Author: Masoud Nikravesh
Publisher: Springer
ISBN: 3540396756
Category : Technology & Engineering
Languages : en
Pages : 362

Book Description
During last decade significant progress has been made in the oil indus try by using soft computing technology. Underlying this evolving technology there have, been ideas transforming the very language we use to describe problems with imprecision, uncertainty and partial truth. These developments offer exciting opportunities, but at the same time it is becoming clearer that further advancements are confronted by funda mental problems. The whole idea of how human process information lies at the core of the challenge. There are already new ways of thinking about the problems within theory of perception-based information. This theory aims to understand and harness the laws of human perceptions to dramatically im prove the processing of information. A matured theory of perception-based information is likely to be proper positioned to contribute to the solution of the problems and provide all the ingredients for a revolution in science, technology and business. In this context, Berkeley Initiative in Soft Computing (BISC), Univer sity of California, Berkeley from one side and Chevron-Texaco from another formed a Technical Committee to organize a Meeting entitled "State of the Art Assessment and New Directions for Research" to understand the signifi cance of the fields accomplishments, new developments and future directions. The Technical Committee selected and invited 15 scientists (and oil indus try experts as technical committee members) from the related disciplines to participate in the Meeting, which took place at the University of California, Berkeley, and March 15-17, 2002.

Modeling and Simulating Cardiac Electrical Activity

Modeling and Simulating Cardiac Electrical Activity PDF Author: David J. Christini
Publisher:
ISBN: 9780750320641
Category : Electrocardiography
Languages : en
Pages : 0

Book Description
This book provides a thorough introduction to the topic of mathematical modeling of electrical activity in the heart, from molecular details of ionic channel dynamics to clinically derived patient-specific models. It discusses how cellular ionic models are formulated, introduces commonly used models and explains why there are so many different models available. The chapters cover modeling of the intracellular calcium handling that underlies cellular contraction as well as modeling molecular-level details of cardiac ion channels, and also focus on specialized topics such as cardiomyocyte energetics and signalling pathways. It is an excellent resource for experienced and specialised researchers in the field, but also biological scientists with a limited background in mathematical modelling and computational methods. Part of Biophysical Society-IOP series.