The Practitioner's Guide to Data Quality Improvement

The Practitioner's Guide to Data Quality Improvement PDF Author: David Loshin
Publisher: Elsevier
ISBN: 0080920349
Category : Computers
Languages : en
Pages : 423

Book Description
The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning.

Improving Data Quality

Improving Data Quality PDF Author: Regional Office for the Western Pacific World Health Organization
Publisher: WHOWPRO
ISBN: 9789290610502
Category : Language Arts & Disciplines
Languages : en
Pages : 80

Book Description
This publication provides a set of guidelines for health care workers, health information managers and administrators to help them focus on improving the timeliness, accuracy and reliability of health care data. They describe key activities and tasks to be considered when addressing the question of data quality in health care, regardless of the setting or size of organisations.

Executing Data Quality Projects

Executing Data Quality Projects PDF Author: Danette McGilvray
Publisher: Academic Press
ISBN: 0128180161
Category : Computers
Languages : en
Pages : 378

Book Description
Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online

Data Driven

Data Driven PDF Author: Thomas C. Redman
Publisher: Harvard Business Press
ISBN: 1422163644
Category : Business & Economics
Languages : en
Pages : 273

Book Description
Your company's data has the potential to add enormous value to every facet of the organization -- from marketing and new product development to strategy to financial management. Yet if your company is like most, it's not using its data to create strategic advantage. Data sits around unused -- or incorrect data fouls up operations and decision making. In Data Driven, Thomas Redman, the "Data Doc," shows how to leverage and deploy data to sharpen your company's competitive edge and enhance its profitability. The author reveals: · The special properties that make data such a powerful asset · The hidden costs of flawed, outdated, or otherwise poor-quality data · How to improve data quality for competitive advantage · Strategies for exploiting your data to make better business decisions · The many ways to bring data to market · Ideas for dealing with political struggles over data and concerns about privacy rights Your company's data is a key business asset, and you need to manage it aggressively and professionally. Whether you're a top executive, an aspiring leader, or a product-line manager, this eye-opening book provides the tools and thinking you need to do that.

Executing Data Quality Projects

Executing Data Quality Projects PDF Author: Danette McGilvray
Publisher: Elsevier
ISBN: 0080558399
Category : Computers
Languages : en
Pages : 353

Book Description
Information is currency. Recent studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. In this important and timely new book, Danette McGilvray presents her "Ten Steps approach to information quality, a proven method for both understanding and creating information quality in the enterprise. Her trademarked approach—in which she has trained Fortune 500 clients and hundreds of workshop attendees—applies to all types of data and to all types of organizations.* Includes numerous templates, detailed examples, and practical advice for executing every step of the "Ten Steps approach.* Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices.* A companion Web site includes links to numerous data quality resources, including many of the planning and information-gathering templates featured in the text, quick summaries of key ideas from the Ten Step methodology, and other tools and information available online.

Entity Resolution and Information Quality

Entity Resolution and Information Quality PDF Author: John R. Talburt
Publisher: Elsevier
ISBN: 0123819733
Category : Computers
Languages : en
Pages : 254

Book Description
Entity Resolution and Information Quality presents topics and definitions, and clarifies confusing terminologies regarding entity resolution and information quality. It takes a very wide view of IQ, including its six-domain framework and the skills formed by the International Association for Information and Data Quality {IAIDQ). The book includes chapters that cover the principles of entity resolution and the principles of Information Quality, in addition to their concepts and terminology. It also discusses the Fellegi-Sunter theory of record linkage, the Stanford Entity Resolution Framework, and the Algebraic Model for Entity Resolution, which are the major theoretical models that support Entity Resolution. In relation to this, the book briefly discusses entity-based data integration (EBDI) and its model, which serve as an extension of the Algebraic Model for Entity Resolution. There is also an explanation of how the three commercial ER systems operate and a description of the non-commercial open-source system known as OYSTER. The book concludes by discussing trends in entity resolution research and practice. Students taking IT courses and IT professionals will find this book invaluable. - First authoritative reference explaining entity resolution and how to use it effectively - Provides practical system design advice to help you get a competitive advantage - Includes a companion site with synthetic customer data for applicatory exercises, and access to a Java-based Entity Resolution program.

Improving Data Warehouse and Business Information Quality

Improving Data Warehouse and Business Information Quality PDF Author: Larry P. English
Publisher: Wiley
ISBN: 9781118082072
Category : Computers
Languages : en
Pages : 544

Book Description
A comprehensive guide to quality improvement from the leading expert in information and data warehouse quality. Each year, companies lose millions as a result of inaccurate and missing data in their operational databases. This in turn corrupts data warehouses, causing them to fail. With information quality improvement and control systems, like the ones described in this book, your company can reduce costs and increase profits from quality information assets. Written by an internationally recognized expert in information quality improvement, Improving Data Warehouse and Business Information Quality arms you with a comprehensive set of tools and techniques for ensuring data quality both in source databases and the data warehouse. With the help of best-practices case studies, Larry English fills you in on: How and when to measure information quality. How to measure the business costs of poor quality information. How to select the right information quality tools for your environment. How to reengineer and cleanse data to improve the information product before it reaches your data warehouse. How to improve the information creation processes at the source. How to build quality controls into data warehouse processes. AUTHORBIO: Larry P. English is the leading international expert in the field of information and data warehouse quality. He is a columnist for Data Management Review and a featured speaker at numerous Data Warehousing Conferences. Larry chairs Information Quality Conferences held around the world.

Information Quality Applied

Information Quality Applied PDF Author: Larry P. English
Publisher: Wiley
ISBN: 9780470134474
Category : Computers
Languages : en
Pages : 0

Book Description
How to apply data quality management techniques to marketing, sales, and other specific business units Author and information quality management expert Larry English returns with a sequel to his much-acclaimed book, Improving Data Warehouse and Business Information Quality. In this new book he takes a hands-on approach, showing how to apply the concepts outlined in the first book to specific business areas like marketing, sales, finance, and human resources. The book presents real-world scenarios so you can see how to meld data quality concepts to specific business areas such as supply chain management, product and service development, customer care, and others. Step-by-step instruction, practical techniques, and helpful templates from the author help you immediately apply best practices and start modeling your own quality initiatives. Maintaining the quality and accuracy of business data is crucial; database managers are in need of specific guidance for data quality management in all key business areas Information Quality Applied offers IT, database, and business managers step-by-step instruction in setting up methodical and effective procedures The book provides specifics if you have to manage data quality in marketing, sales, customer care, supply chain management, product and service management, human resources, or finance The author includes templates that readers can put to immedate use for modeling their own quality initiatives A Companion Web site provides templates, updates to the book, and links to related sites

Enterprise Knowledge Management

Enterprise Knowledge Management PDF Author: David Loshin
Publisher: Morgan Kaufmann
ISBN: 9780124558403
Category : Business & Economics
Languages : en
Pages : 516

Book Description
This volume presents a methodology for defining, measuring and improving data quality. It lays out an economic framework for understanding the value of data quality, then outlines data quality rules and domain- and mapping-based approaches to consolidating enterprise knowledge.

Data Science Strategy For Dummies

Data Science Strategy For Dummies PDF Author: Ulrika Jägare
Publisher: John Wiley & Sons
ISBN: 1119566274
Category : Computers
Languages : en
Pages : 423

Book Description
All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value.