Author: R. Henry
Publisher: Springer Science & Business Media
ISBN: 1461524415
Category : Science
Languages : en
Pages : 183
Book Description
If I had to nominate an area of food production in which science has played a major role in addressing product quality to meet market needs I would not pass by the intimate rela tionship of cereaI chemistry with cereaI plant breeding programs. In Australia, cereaI chemistry and product quality labs ha ve long been associated with wheat and barley breeding programs. Grain quality characteristics have been principal factors determining registration of new cultivars. This has not been without pain in Australia. On the one hand some cultivars with promising yield and agronomic characteristics have been rejected on the basis of quality characteristics, and for a period our breeders imposed selection regimes based on yield which resulted in declining quality characteristics. In the end the market provides the critic al signals. For many years Australia held a commanding market position on the basis of a single quality image, initiaHy based on bulked wheat of fair/average quality (FAQ). Later this was improved by segregation into four broad classes* based around Australian Standard White (ASW). This is no longer a viable marketing strategy. We were probably a little slow in rec ognising the mosaic of present day wheat markets, but now have up to 18 different grades available. Around the world wheat is a grain with many end uses. Its use in bread is expanding.
Improvement of Cereal Quality by Genetic Engineering
Author: R. Henry
Publisher: Springer Science & Business Media
ISBN: 1461524415
Category : Science
Languages : en
Pages : 183
Book Description
If I had to nominate an area of food production in which science has played a major role in addressing product quality to meet market needs I would not pass by the intimate rela tionship of cereaI chemistry with cereaI plant breeding programs. In Australia, cereaI chemistry and product quality labs ha ve long been associated with wheat and barley breeding programs. Grain quality characteristics have been principal factors determining registration of new cultivars. This has not been without pain in Australia. On the one hand some cultivars with promising yield and agronomic characteristics have been rejected on the basis of quality characteristics, and for a period our breeders imposed selection regimes based on yield which resulted in declining quality characteristics. In the end the market provides the critic al signals. For many years Australia held a commanding market position on the basis of a single quality image, initiaHy based on bulked wheat of fair/average quality (FAQ). Later this was improved by segregation into four broad classes* based around Australian Standard White (ASW). This is no longer a viable marketing strategy. We were probably a little slow in rec ognising the mosaic of present day wheat markets, but now have up to 18 different grades available. Around the world wheat is a grain with many end uses. Its use in bread is expanding.
Publisher: Springer Science & Business Media
ISBN: 1461524415
Category : Science
Languages : en
Pages : 183
Book Description
If I had to nominate an area of food production in which science has played a major role in addressing product quality to meet market needs I would not pass by the intimate rela tionship of cereaI chemistry with cereaI plant breeding programs. In Australia, cereaI chemistry and product quality labs ha ve long been associated with wheat and barley breeding programs. Grain quality characteristics have been principal factors determining registration of new cultivars. This has not been without pain in Australia. On the one hand some cultivars with promising yield and agronomic characteristics have been rejected on the basis of quality characteristics, and for a period our breeders imposed selection regimes based on yield which resulted in declining quality characteristics. In the end the market provides the critic al signals. For many years Australia held a commanding market position on the basis of a single quality image, initiaHy based on bulked wheat of fair/average quality (FAQ). Later this was improved by segregation into four broad classes* based around Australian Standard White (ASW). This is no longer a viable marketing strategy. We were probably a little slow in rec ognising the mosaic of present day wheat markets, but now have up to 18 different grades available. Around the world wheat is a grain with many end uses. Its use in bread is expanding.
Safety of Genetically Engineered Foods
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309166152
Category : Science
Languages : en
Pages : 254
Book Description
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
Publisher: National Academies Press
ISBN: 0309166152
Category : Science
Languages : en
Pages : 254
Book Description
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
Genetically Engineered Crops
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309437385
Category : Science
Languages : en
Pages : 607
Book Description
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
Publisher: National Academies Press
ISBN: 0309437385
Category : Science
Languages : en
Pages : 607
Book Description
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
Genetic Resources, Chromosome Engineering, and Crop Improvement
Author: Ram J. Singh
Publisher: CRC Press
ISBN: 0203489268
Category : Science
Languages : en
Pages : 457
Book Description
Summarizing landmark research, Volume 2 of this essential series furnishes information on the availability of germplasm resources that breeders can exploit for producing high-yielding cereal crop varieties. Written by leading international experts, this volume offers the most comprehensive and up-to-date information on employing genetic resources t
Publisher: CRC Press
ISBN: 0203489268
Category : Science
Languages : en
Pages : 457
Book Description
Summarizing landmark research, Volume 2 of this essential series furnishes information on the availability of germplasm resources that breeders can exploit for producing high-yielding cereal crop varieties. Written by leading international experts, this volume offers the most comprehensive and up-to-date information on employing genetic resources t
Molecular improvement of cereal crops
Author: I. K. Vasil
Publisher: Springer Science & Business Media
ISBN: 9780792354710
Category : Science
Languages : en
Pages : 418
Book Description
From the pre-historic era to modern times, cereal grains have been the most important source of human nutrition, and have helped sustain the increasing population and the development of human civilization. In order to meet the food needs of the 21st century, food production must be doubled by the year 2025, and nearly tripled by 2050. Such enormous increases in food productivity cannot be brought about by relying entirely on conventional breeding methods, especially on less land per capita, with poor quality and quantity of water, and under rapidly deteriorating environmental conditions. Complementing and supplementing the breeding of major food crops, such as the cereals, which together account for 66% of the world food supply, with molecular breeding and genetic manipulation may well provide a grace period of about 50 years in which to control population growth and achieve sustainable development. In this volume, leading world experts on cereal biotechnology describe the production and commercialization of the first generation of transgenic cereals designed to substantially reduce or prevent the enormous losses to cereal productivity caused by competition with weeds, and by various pests and pathogens, which is an important first step in that direction.
Publisher: Springer Science & Business Media
ISBN: 9780792354710
Category : Science
Languages : en
Pages : 418
Book Description
From the pre-historic era to modern times, cereal grains have been the most important source of human nutrition, and have helped sustain the increasing population and the development of human civilization. In order to meet the food needs of the 21st century, food production must be doubled by the year 2025, and nearly tripled by 2050. Such enormous increases in food productivity cannot be brought about by relying entirely on conventional breeding methods, especially on less land per capita, with poor quality and quantity of water, and under rapidly deteriorating environmental conditions. Complementing and supplementing the breeding of major food crops, such as the cereals, which together account for 66% of the world food supply, with molecular breeding and genetic manipulation may well provide a grace period of about 50 years in which to control population growth and achieve sustainable development. In this volume, leading world experts on cereal biotechnology describe the production and commercialization of the first generation of transgenic cereals designed to substantially reduce or prevent the enormous losses to cereal productivity caused by competition with weeds, and by various pests and pathogens, which is an important first step in that direction.
Seed Proteins
Author: Peter R. Shewry
Publisher: Springer Science & Business Media
ISBN: 9401144311
Category : Science
Languages : en
Pages : 892
Book Description
Seeds provide more than half of the world's intake of dietary protein and energy and thus are of immense economic, cultural and nutritional importance. Proteins can account for up to 40% of the dry weight of various types of seeds, thereby making a large contribution to the nutritional quality and processing properties of seeds. It is, therefore, not surprising that seed proteins were among the first plant components to be systematically studied, some 250 years ago, and have been a major focus of research over the past 100 years. The properties and behaviour of seed proteins pervade modem life in numerous ways. For example, legume and cereal proteins are used'in the production of a wide range of meat-free foods; the process of bread-making is dep~ndent on the physical chemical properties of wheat seed proteins; and in developed, as well as developing, countries, nutritional deficiencies among vegetarian diets are avoided through balancing legume and cereal seeds as sources of dietary proteins. Understanding seed proteins, in order to improve their composition and properties and to increase their concentrations, will thus continue to be an important research objective for the future. The present volume represents the culmination of a long-discussed plan of the editors, to bring together the best international authorities in order to compile a definitive monograph on biological, biochemical, molecular and genetic aspects of seed proteins.
Publisher: Springer Science & Business Media
ISBN: 9401144311
Category : Science
Languages : en
Pages : 892
Book Description
Seeds provide more than half of the world's intake of dietary protein and energy and thus are of immense economic, cultural and nutritional importance. Proteins can account for up to 40% of the dry weight of various types of seeds, thereby making a large contribution to the nutritional quality and processing properties of seeds. It is, therefore, not surprising that seed proteins were among the first plant components to be systematically studied, some 250 years ago, and have been a major focus of research over the past 100 years. The properties and behaviour of seed proteins pervade modem life in numerous ways. For example, legume and cereal proteins are used'in the production of a wide range of meat-free foods; the process of bread-making is dep~ndent on the physical chemical properties of wheat seed proteins; and in developed, as well as developing, countries, nutritional deficiencies among vegetarian diets are avoided through balancing legume and cereal seeds as sources of dietary proteins. Understanding seed proteins, in order to improve their composition and properties and to increase their concentrations, will thus continue to be an important research objective for the future. The present volume represents the culmination of a long-discussed plan of the editors, to bring together the best international authorities in order to compile a definitive monograph on biological, biochemical, molecular and genetic aspects of seed proteins.
Phytonutritional Improvement of Crops
Author: Noureddine Benkeblia
Publisher: John Wiley & Sons
ISBN: 1119079942
Category : Technology & Engineering
Languages : en
Pages : 549
Book Description
An in-depth treatment of cutting-edge work being done internationally to develop new techniques in crop nutritional quality improvement Phytonutritional Improvement of Crops explores recent advances in biotechnological methods for the nutritional enrichment of food crops. Featuring contributions from an international group of experts in the field, it provides cutting-edge information on techniques of immense importance to academic, professional and commercial operations. World population is now estimated to be 7.5 billion people, with an annual growth rate of nearly 1.5%. Clearly, the need to enhance not only the quantity of food produced but its quality has never been greater, especially among less developed nations. Genetic manipulation offers the best prospect for achieving that goal. As many fruit crops provide proven health benefits, research efforts need to be focused on improving the nutritional qualities of fruits and vegetables through increased synthesis of lycopene and beta carotene, anthocyanins and some phenolics known to be strong antioxidants. Despite tremendous growth in the area occurring over the past several decades, the work has only just begun. This book represents an effort to address the urgent need to promote those efforts and to mobilise the tools of biotechnical and genetic engineering of the major food crops. Topics covered include: New applications of RNA-interference and virus induced gene silencing (VIGS) for nutritional genomics in crop plants Biotechnological techniques for enhancing carotenoid in crops and their implications for both human health and sustainable development Progress being made in the enrichment and metabolic profiling of diverse carotenoids in a range of fruit crops, including tomatoes, sweet potatoes and tropical fruits Biotechnologies for boosting the phytonutritional values of key crops, including grapes and sweet potatoes Recent progress in the development of transgenic rice engineered to massively accumulate flavonoids in-seed Phytonutritional Improvement of Crops is an important text/reference that belongs in all universities and research establishments where agriculture, horticulture, biological sciences, and food science and technology are studied, taught and applied.
Publisher: John Wiley & Sons
ISBN: 1119079942
Category : Technology & Engineering
Languages : en
Pages : 549
Book Description
An in-depth treatment of cutting-edge work being done internationally to develop new techniques in crop nutritional quality improvement Phytonutritional Improvement of Crops explores recent advances in biotechnological methods for the nutritional enrichment of food crops. Featuring contributions from an international group of experts in the field, it provides cutting-edge information on techniques of immense importance to academic, professional and commercial operations. World population is now estimated to be 7.5 billion people, with an annual growth rate of nearly 1.5%. Clearly, the need to enhance not only the quantity of food produced but its quality has never been greater, especially among less developed nations. Genetic manipulation offers the best prospect for achieving that goal. As many fruit crops provide proven health benefits, research efforts need to be focused on improving the nutritional qualities of fruits and vegetables through increased synthesis of lycopene and beta carotene, anthocyanins and some phenolics known to be strong antioxidants. Despite tremendous growth in the area occurring over the past several decades, the work has only just begun. This book represents an effort to address the urgent need to promote those efforts and to mobilise the tools of biotechnical and genetic engineering of the major food crops. Topics covered include: New applications of RNA-interference and virus induced gene silencing (VIGS) for nutritional genomics in crop plants Biotechnological techniques for enhancing carotenoid in crops and their implications for both human health and sustainable development Progress being made in the enrichment and metabolic profiling of diverse carotenoids in a range of fruit crops, including tomatoes, sweet potatoes and tropical fruits Biotechnologies for boosting the phytonutritional values of key crops, including grapes and sweet potatoes Recent progress in the development of transgenic rice engineered to massively accumulate flavonoids in-seed Phytonutritional Improvement of Crops is an important text/reference that belongs in all universities and research establishments where agriculture, horticulture, biological sciences, and food science and technology are studied, taught and applied.
Molecular Approaches to Crop Improvement
Author: Elizabeth S. Dennis
Publisher: Springer Science & Business Media
ISBN: 3709191084
Category : Science
Languages : en
Pages : 176
Book Description
Although plant genes were first isolated only some twelve years ago and transfer of foreign DNA into tobacco cells first demonstrated some eight years ago, the application and extension of biotechnology to agricultural problems has already led to the field-testing of genetically modified crop plants. The promise of tailor-made plants containing resistance to pests or diseases as well as many other desirable characteristics has led to the almost compulsory incorporation of molecular biology into the research programs of chemical and seed companies as well as Governmental agricultural agencies. With the routine transformation of rice and the early evidence of transformation of maize the possibility of the world's major cereal crops being modified for improved nutritional value or resistance characteristics is now likely in the next few years. The increasing number of cloned plant genes and the increasing sophistication of our knowledge of the major developmental and biochemi cal pathways in plants should eventually allow us to engineer crop plants with higher yields and with less detrimental impact on the environment than now occurs in our current high input agricultural systems. This book draws together many of the expanding areas of plant molecular biology and genetic engineering that will make a substantial contribution to the development of the more productive and efficient crop plants that the world's farmers will be planting in the next decade.
Publisher: Springer Science & Business Media
ISBN: 3709191084
Category : Science
Languages : en
Pages : 176
Book Description
Although plant genes were first isolated only some twelve years ago and transfer of foreign DNA into tobacco cells first demonstrated some eight years ago, the application and extension of biotechnology to agricultural problems has already led to the field-testing of genetically modified crop plants. The promise of tailor-made plants containing resistance to pests or diseases as well as many other desirable characteristics has led to the almost compulsory incorporation of molecular biology into the research programs of chemical and seed companies as well as Governmental agricultural agencies. With the routine transformation of rice and the early evidence of transformation of maize the possibility of the world's major cereal crops being modified for improved nutritional value or resistance characteristics is now likely in the next few years. The increasing number of cloned plant genes and the increasing sophistication of our knowledge of the major developmental and biochemi cal pathways in plants should eventually allow us to engineer crop plants with higher yields and with less detrimental impact on the environment than now occurs in our current high input agricultural systems. This book draws together many of the expanding areas of plant molecular biology and genetic engineering that will make a substantial contribution to the development of the more productive and efficient crop plants that the world's farmers will be planting in the next decade.
Cereals and Pulses
Author: Martin Brink
Publisher: PROTA
ISBN: 9057821702
Category : CD-ROMs
Languages : en
Pages : 300
Book Description
Publisher: PROTA
ISBN: 9057821702
Category : CD-ROMs
Languages : en
Pages : 300
Book Description
Genomic Designing for Biotic Stress Resistant Cereal Crops
Author: Chittaranjan Kole
Publisher: Springer Nature
ISBN: 3030758796
Category : Science
Languages : en
Pages : 340
Book Description
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the biotic stresses caused by different diseases and pests that are important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to a cereal crop in this volume elucidate on different types of biotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating biotic stress-resistant crops.
Publisher: Springer Nature
ISBN: 3030758796
Category : Science
Languages : en
Pages : 340
Book Description
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the biotic stresses caused by different diseases and pests that are important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to a cereal crop in this volume elucidate on different types of biotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating biotic stress-resistant crops.