An Introduction to Market Risk Measurement PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Introduction to Market Risk Measurement PDF full book. Access full book title An Introduction to Market Risk Measurement by Kevin Dowd. Download full books in PDF and EPUB format.

An Introduction to Market Risk Measurement

An Introduction to Market Risk Measurement PDF Author: Kevin Dowd
Publisher: John Wiley & Sons
ISBN: 0470855207
Category : Business & Economics
Languages : en
Pages : 304

Book Description
Includes a CD-ROM that contains Excel workbooks and a Matlab manual and software. Covers the subject without advanced or exotic material.

An Introduction to Market Risk Measurement

An Introduction to Market Risk Measurement PDF Author: Kevin Dowd
Publisher: John Wiley & Sons
ISBN: 0470855207
Category : Business & Economics
Languages : en
Pages : 304

Book Description
Includes a CD-ROM that contains Excel workbooks and a Matlab manual and software. Covers the subject without advanced or exotic material.

Measuring Market Risk

Measuring Market Risk PDF Author: Kevin Dowd
Publisher: John Wiley & Sons
ISBN: 0470016515
Category : Business & Economics
Languages : en
Pages : 410

Book Description
Fully revised and restructured, Measuring Market Risk, Second Edition includes a new chapter on options risk management, as well as substantial new information on parametric risk, non-parametric measurements and liquidity risks, more practical information to help with specific calculations, and new examples including Q&A’s and case studies.

Computational Finance 1999

Computational Finance 1999 PDF Author: Yaser S. Abu-Mostafa
Publisher: MIT Press
ISBN: 9780262511070
Category : Business & Economics
Languages : en
Pages : 744

Book Description
This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. Computational finance, an exciting new cross-disciplinary research area, draws extensively on the tools and techniques of computer science, statistics, information systems, and financial economics. This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. These methods are applied to a wide range of problems in finance, including risk management, asset allocation, style analysis, dynamic trading and hedging, forecasting, and option pricing. The book is based on the sixth annual international conference Computational Finance 1999, held at New York University's Stern School of Business.

Financial Risk Management

Financial Risk Management PDF Author: Jimmy Skoglund
Publisher: John Wiley & Sons
ISBN: 1119135516
Category : Business & Economics
Languages : en
Pages : 580

Book Description
A global banking risk management guide geared toward the practitioner Financial Risk Management presents an in-depth look at banking risk on a global scale, including comprehensive examination of the U.S. Comprehensive Capital Analysis and Review, and the European Banking Authority stress tests. Written by the leaders of global banking risk products and management at SAS, this book provides the most up-to-date information and expert insight into real risk management. The discussion begins with an overview of methods for computing and managing a variety of risk, then moves into a review of the economic foundation of modern risk management and the growing importance of model risk management. Market risk, portfolio credit risk, counterparty credit risk, liquidity risk, profitability analysis, stress testing, and others are dissected and examined, arming you with the strategies you need to construct a robust risk management system. The book takes readers through a journey from basic market risk analysis to major recent advances in all financial risk disciplines seen in the banking industry. The quantitative methodologies are developed with ample business case discussions and examples illustrating how they are used in practice. Chapters devoted to firmwide risk and stress testing cross reference the different methodologies developed for the specific risk areas and explain how they work together at firmwide level. Since risk regulations have driven a lot of the recent practices, the book also relates to the current global regulations in the financial risk areas. Risk management is one of the fastest growing segments of the banking industry, fueled by banks' fundamental intermediary role in the global economy and the industry's profit-driven increase in risk-seeking behavior. This book is the product of the authors' experience in developing and implementing risk analytics in banks around the globe, giving you a comprehensive, quantitative-oriented risk management guide specifically for the practitioner. Compute and manage market, credit, asset, and liability risk Perform macroeconomic stress testing and act on the results Get up to date on regulatory practices and model risk management Examine the structure and construction of financial risk systems Delve into funds transfer pricing, profitability analysis, and more Quantitative capability is increasing with lightning speed, both methodologically and technologically. Risk professionals must keep pace with the changes, and exploit every tool at their disposal. Financial Risk Management is the practitioner's guide to anticipating, mitigating, and preventing risk in the modern banking industry.

Quantitative Risk Management

Quantitative Risk Management PDF Author: Alexander J. McNeil
Publisher: Princeton University Press
ISBN: 0691166277
Category : Business & Economics
Languages : en
Pages : 720

Book Description
This book provides the most comprehensive treatment of the theoretical concepts and modelling techniques of quantitative risk management. Whether you are a financial risk analyst, actuary, regulator or student of quantitative finance, Quantitative Risk Management gives you the practical tools you need to solve real-world problems. Describing the latest advances in the field, Quantitative Risk Management covers the methods for market, credit and operational risk modelling. It places standard industry approaches on a more formal footing and explores key concepts such as loss distributions, risk measures and risk aggregation and allocation principles. The book's methodology draws on diverse quantitative disciplines, from mathematical finance and statistics to econometrics and actuarial mathematics. A primary theme throughout is the need to satisfactorily address extreme outcomes and the dependence of key risk drivers. Proven in the classroom, the book also covers advanced topics like credit derivatives. Fully revised and expanded to reflect developments in the field since the financial crisis Features shorter chapters to facilitate teaching and learning Provides enhanced coverage of Solvency II and insurance risk management and extended treatment of credit risk, including counterparty credit risk and CDO pricing Includes a new chapter on market risk and new material on risk measures and risk aggregation

Monte Carlo and Quasi-Monte Carlo Sampling

Monte Carlo and Quasi-Monte Carlo Sampling PDF Author: Christiane Lemieux
Publisher: Springer Science & Business Media
ISBN: 038778165X
Category : Mathematics
Languages : en
Pages : 373

Book Description
Quasi–Monte Carlo methods have become an increasingly popular alternative to Monte Carlo methods over the last two decades. Their successful implementation on practical problems, especially in finance, has motivated the development of several new research areas within this field to which practitioners and researchers from various disciplines currently contribute. This book presents essential tools for using quasi–Monte Carlo sampling in practice. The first part of the book focuses on issues related to Monte Carlo methods—uniform and non-uniform random number generation, variance reduction techniques—but the material is presented to prepare the readers for the next step, which is to replace the random sampling inherent to Monte Carlo by quasi–random sampling. The second part of the book deals with this next step. Several aspects of quasi-Monte Carlo methods are covered, including constructions, randomizations, the use of ANOVA decompositions, and the concept of effective dimension. The third part of the book is devoted to applications in finance and more advanced statistical tools like Markov chain Monte Carlo and sequential Monte Carlo, with a discussion of their quasi–Monte Carlo counterpart. The prerequisites for reading this book are a basic knowledge of statistics and enough mathematical maturity to follow through the various techniques used throughout the book. This text is aimed at graduate students in statistics, management science, operations research, engineering, and applied mathematics. It should also be useful to practitioners who want to learn more about Monte Carlo and quasi–Monte Carlo methods and researchers interested in an up-to-date guide to these methods.

Monte Carlo Methods and Models in Finance and Insurance

Monte Carlo Methods and Models in Finance and Insurance PDF Author: Ralf Korn
Publisher: CRC Press
ISBN: 1420076191
Category : Business & Economics
Languages : en
Pages : 485

Book Description
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Rom

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering PDF Author: Paul Glasserman
Publisher: Springer Science & Business Media
ISBN: 0387216170
Category : Mathematics
Languages : en
Pages : 603

Book Description
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis

Proceedings of the IEEE/IAFE 1995 Computational Intelligence for Financial Engineering (CIFEr)

Proceedings of the IEEE/IAFE 1995 Computational Intelligence for Financial Engineering (CIFEr) PDF Author:
Publisher:
ISBN:
Category : Finance
Languages : en
Pages : 242

Book Description


Handbooks in Operations Research and Management Science: Simulation

Handbooks in Operations Research and Management Science: Simulation PDF Author: Shane G. Henderson
Publisher: Elsevier
ISBN: 0080464769
Category : Business & Economics
Languages : en
Pages : 693

Book Description
This Handbook is a collection of chapters on key issues in the design and analysis of computer simulation experiments on models of stochastic systems. The chapters are tightly focused and written by experts in each area. For the purpose of this volume "simulation refers to the analysis of stochastic processes through the generation of sample paths (realization) of the processes. Attention focuses on design and analysis issues and the goal of this volume is to survey the concepts, principles, tools and techniques that underlie the theory and practice of stochastic simulation design and analysis. Emphasis is placed on the ideas and methods that are likely to remain an intrinsic part of the foundation of the field for the foreseeable future. The chapters provide up-to-date references for both the simulation researcher and the advanced simulation user, but they do not constitute an introductory level 'how to' guide. Computer scientists, financial analysts, industrial engineers, management scientists, operations researchers and many other professionals use stochastic simulation to design, understand and improve communications, financial, manufacturing, logistics, and service systems. A theme that runs throughout these diverse applications is the need to evaluate system performance in the face of uncertainty, including uncertainty in user load, interest rates, demand for product, availability of goods, cost of transportation and equipment failures.* Tightly focused chapters written by experts* Surveys concepts, principles, tools, and techniques that underlie the theory and practice of stochastic simulation design and analysis* Provides an up-to-date reference for both simulation researchers and advanced simulation users