Image Processing and Data Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Image Processing and Data Analysis PDF full book. Access full book title Image Processing and Data Analysis by Jean-Luc Starck. Download full books in PDF and EPUB format.

Image Processing and Data Analysis

Image Processing and Data Analysis PDF Author: Jean-Luc Starck
Publisher: Cambridge University Press
ISBN: 0521599148
Category : Image processing
Languages : en
Pages : 301

Book Description
Powerful techniques have been developed in recent years for the analysis of digital data, especially the manipulation of images. This book provides an in-depth introduction to a range of these innovative, avante-garde data-processing techniques. It develops the reader's understanding of each technique and then shows with practical examples how they can be applied to improve the skills of graduate students and researchers in astronomy, electrical engineering, physics, geophysics and medical imaging. What sets this book apart from others on the subject is the complementary blend of theory and practical application. Throughout, it is copiously illustrated with real-world examples from astronomy, electrical engineering, remote sensing and medicine. It also shows how many, more traditional, methods can be enhanced by incorporating the new wavelet and multiscale methods into the processing. For graduate students and researchers already experienced in image processing and data analysis, this book provides an indispensable guide to a wide range of exciting and original data-analysis techniques.

Image Processing and Data Analysis

Image Processing and Data Analysis PDF Author: Jean-Luc Starck
Publisher: Cambridge University Press
ISBN: 0521599148
Category : Image processing
Languages : en
Pages : 301

Book Description
Powerful techniques have been developed in recent years for the analysis of digital data, especially the manipulation of images. This book provides an in-depth introduction to a range of these innovative, avante-garde data-processing techniques. It develops the reader's understanding of each technique and then shows with practical examples how they can be applied to improve the skills of graduate students and researchers in astronomy, electrical engineering, physics, geophysics and medical imaging. What sets this book apart from others on the subject is the complementary blend of theory and practical application. Throughout, it is copiously illustrated with real-world examples from astronomy, electrical engineering, remote sensing and medicine. It also shows how many, more traditional, methods can be enhanced by incorporating the new wavelet and multiscale methods into the processing. For graduate students and researchers already experienced in image processing and data analysis, this book provides an indispensable guide to a wide range of exciting and original data-analysis techniques.

Nanoscale Photonic Imaging

Nanoscale Photonic Imaging PDF Author: Tim Salditt
Publisher: Springer Nature
ISBN: 3030344134
Category : Science
Languages : en
Pages : 634

Book Description
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

Sparse Image and Signal Processing

Sparse Image and Signal Processing PDF Author: Jean-Luc Starck
Publisher: Cambridge University Press
ISBN: 1107088062
Category : Computers
Languages : en
Pages : 449

Book Description
Presents state-of-the-art sparse and multiscale image and signal processing with applications in astronomy, biology, MRI, media, and forensics.

Scale-Space Theory in Computer Vision

Scale-Space Theory in Computer Vision PDF Author: Bart ter Haar Romeny
Publisher: Springer Science & Business Media
ISBN: 9783540631675
Category : Computers
Languages : en
Pages : 388

Book Description
This book constitutes the refereed proceedings of the First International Conference on Scale-Space Theory for Computer Vision, Scale-Space '97, held in Utrecht, The Netherlands, in July 1997. The volume presents 21 revised full papers selected from a total of 41 submissions. Also included are 2 invited papers and 13 poster presentations. This book is the first comprehensive documentation of the application of Scale-Space techniques in computer vision and, in the broader context, in image processing and pattern recognition.

Information Processing in Medical Imaging

Information Processing in Medical Imaging PDF Author: James Duncan
Publisher: Springer Science & Business Media
ISBN: 9783540630463
Category : Medical
Languages : en
Pages : 580

Book Description
This book constitutes the refereed proceedings of the 15th International Conference on Information Processing in Medical Imaging, IPMI'97, held in Poultney, Vermont, USA, in June 1997. The 27 revised full papers presented were selected from a total of 96 submissions; also included are 31 poster presentations. The book is divided into topical sections on shape models and matching, novel imaging methods, segmentation, image quality and statistical character of measured data, registration/mapping, statistical models in functional neuroimaging, and MR analysis and processing.

Riemannian Geometric Statistics in Medical Image Analysis

Riemannian Geometric Statistics in Medical Image Analysis PDF Author: Xavier Pennec
Publisher: Academic Press
ISBN: 0128147261
Category : Computers
Languages : en
Pages : 636

Book Description
Over the past 15 years, there has been a growing need in the medical image computing community for principled methods to process nonlinear geometric data. Riemannian geometry has emerged as one of the most powerful mathematical and computational frameworks for analyzing such data. Riemannian Geometric Statistics in Medical Image Analysis is a complete reference on statistics on Riemannian manifolds and more general nonlinear spaces with applications in medical image analysis. It provides an introduction to the core methodology followed by a presentation of state-of-the-art methods. Beyond medical image computing, the methods described in this book may also apply to other domains such as signal processing, computer vision, geometric deep learning, and other domains where statistics on geometric features appear. As such, the presented core methodology takes its place in the field of geometric statistics, the statistical analysis of data being elements of nonlinear geometric spaces. The foundational material and the advanced techniques presented in the later parts of the book can be useful in domains outside medical imaging and present important applications of geometric statistics methodology Content includes: - The foundations of Riemannian geometric methods for statistics on manifolds with emphasis on concepts rather than on proofs - Applications of statistics on manifolds and shape spaces in medical image computing - Diffeomorphic deformations and their applications As the methods described apply to domains such as signal processing (radar signal processing and brain computer interaction), computer vision (object and face recognition), and other domains where statistics of geometric features appear, this book is suitable for researchers and graduate students in medical imaging, engineering and computer science. - A complete reference covering both the foundations and state-of-the-art methods - Edited and authored by leading researchers in the field - Contains theory, examples, applications, and algorithms - Gives an overview of current research challenges and future applications

Shearlets

Shearlets PDF Author: Gitta Kutyniok
Publisher: Springer Science & Business Media
ISBN: 081768316X
Category : Mathematics
Languages : en
Pages : 346

Book Description
Over the last 20 years, multiscale methods and wavelets have revolutionized the field of applied mathematics by providing an efficient means of encoding isotropic phenomena. Directional multiscale systems, particularly shearlets, are now having the same dramatic impact on the encoding of multidimensional signals. Since its introduction about five years ago, the theory of shearlets has rapidly developed and gained wide recognition as the superior way of achieving a truly unified treatment in both a continuous and a digital setting. By now, it has reached maturity as a research field, with rich mathematics, efficient numerical methods, and various important applications.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 790

Book Description


Medial Representations

Medial Representations PDF Author: Kaleem Siddiqi
Publisher: Springer Science & Business Media
ISBN: 140208658X
Category : Mathematics
Languages : en
Pages : 446

Book Description
The last half century has seen the development of many biological or physical t- ories that have explicitly or implicitly involved medial descriptions of objects and other spatial entities in our world. Simultaneously mathematicians have studied the properties of these skeletal descriptions of shape, and, stimulated by the many areas where medial models are useful, computer scientists and engineers have developed numerous algorithms for computing and using these models. We bring this kno- edge and experience together into this book in order to make medial technology more widely understood and used. The book consists of an introductory chapter, two chapters on the major mat- matical results on medial representations, ?ve chapters on algorithms for extracting medial models from boundary or binary image descriptions of objects, and three chapters on applications in image analysis and other areas of study and design. We hope that this book will serve the science and engineering communities using medial models and will provide learning material for students entering this ?eld. We are fortunate to have recruited many of the world leaders in medial theory, algorithms, and applications to write chapters in this book. We thank them for their signi?cant effort in preparing their contributions. We have edited these chapters and have combined them with the ?ve chapters that we have written to produce an integrated whole.

Statistical Image Processing and Multidimensional Modeling

Statistical Image Processing and Multidimensional Modeling PDF Author: Paul Fieguth
Publisher: Springer Science & Business Media
ISBN: 1441972943
Category : Mathematics
Languages : en
Pages : 465

Book Description
Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of something—an artery, a road, a DNA marker, an oil spill—from imagery, possibly noisy, blurry, or incomplete. A great many textbooks have been written on image processing. However this book does not so much focus on images, per se, but rather on spatial data sets, with one or more measurements taken over a two or higher dimensional space, and to which standard image-processing algorithms may not apply. There are many important data analysis methods developed in this text for such statistical image problems. Examples abound throughout remote sensing (satellite data mapping, data assimilation, climate-change studies, land use), medical imaging (organ segmentation, anomaly detection), computer vision (image classification, segmentation), and other 2D/3D problems (biological imaging, porous media). The goal, then, of this text is to address methods for solving multidimensional statistical problems. The text strikes a balance between mathematics and theory on the one hand, versus applications and algorithms on the other, by deliberately developing the basic theory (Part I), the mathematical modeling (Part II), and the algorithmic and numerical methods (Part III) of solving a given problem. The particular emphases of the book include inverse problems, multidimensional modeling, random fields, and hierarchical methods.