Progress Toward Ignition at the National Ignition Facility PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Progress Toward Ignition at the National Ignition Facility PDF full book. Access full book title Progress Toward Ignition at the National Ignition Facility by . Download full books in PDF and EPUB format.

Progress Toward Ignition at the National Ignition Facility

Progress Toward Ignition at the National Ignition Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Book Description


Progress Toward Ignition at the National Ignition Facility

Progress Toward Ignition at the National Ignition Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Book Description


The National Ignition Facility (NIF) and the National Ignition Campaign (NIC).

The National Ignition Facility (NIF) and the National Ignition Campaign (NIC). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments is planned for summer 2009. This paper summarizes the design, performance, and status of NIF and plans for the NIF ignition experimental program. A brief summary of the overall NIF experimental program is also presented.

Preparing for Ignition Experiments on the National Ignition Facility

Preparing for Ignition Experiments on the National Ignition Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Book Description
The National Ignition Facility (NIF) is a 192-beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing ignition experiments for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF will produce 1.8 MJ, 500 TW of ultraviolet light ([lambda] = 351 nm) making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for the study of matter at extreme temperatures and densities for producing and developing ICF. The ignition studies will be an essential step in developing inertial fusion energy (IFE). the NIF Project is over 93% complete and scheduled for completion in 2009. Experiments using one beam have demonstrated that NIF can meet all of its performance goals. A detailed plan called the National Ignition Campaign (NIC) has been developed to begin ignition experiments in 2010. The plan includes the target physics and the equipment such as diagnostics, cryogenic target manipulator and user optics required for the ignition experiment. Target designs have been developed that calculate to ignite at energy as low as 1 MJ. Plans are under way to make NIF a national user facility for experiments on HED physics and nuclear science, including experiments relevant to the development of IFE.

National Ignition Facility

National Ignition Facility PDF Author: United States. General Accounting Office
Publisher:
ISBN:
Category : Nuclear facilities
Languages : en
Pages : 52

Book Description


The National Ignition Facility

The National Ignition Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 21

Book Description
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, when completed in 2008, will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter-diameter target chamber and room for 100 diagnostics. NIF is housed in a 26,000 square meter environmentally controlled building and is the world's largest and most energetic laser experimental system. NIF provides a scientific center for the study of inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 108 K and 1011 bar; conditions that exist naturally only in the interior of stars and planets. NIF is currently configured with four laser beams activated in late 2002. These beams are being regularly used for laser performance and physics experiments and to date nearly 250 system shots have been conducted. NIF's laser beams have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5-ns pulses at the third harmonic (351 nm). A number of target experimental systems are being commissioned in support of experimental campaigns. This paper provides a detailed look the NIF laser systems, laser and optical performance, and results from laser commissioning shots. We also discuss NIF's high -energy density and inertial fusion experimental capabilities, the first experiments on NIF, and plans for future capabilities of this unique facility.

M - Pk

M - Pk PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description


Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System

Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Book Description
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

The National Ignition Facility

The National Ignition Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 47

Book Description
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility that, when completed in 2008, will contain a 192-beam, 1.8- Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter-diameter target chamber and room for 100 diagnostics. NIF is the world's largest and most energetic laser experimental system and will provide a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 108 K and 1011 bar; conditions that exist naturally only in the interior of stars and planets. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules in 23-ns pulses of infrared light and over 16 kJ in 3.5- ns pulses at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance, and results from recent laser commissioning shots. We follow this with a discussion of NIF's high-energy-density and inertial fusion experimental capabilities, the first experiments on NIF, and plans for future capabilities of this unique facility.

Overview of the National Ignition Facility

Overview of the National Ignition Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory will be the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF is a 192 beam Nd-glass laser facility that will produce 1.8 MJ, 500 TW of ultraviolet light making it over fifty times more energetic than present ICF facilities. The NIF Project began in 1995 and is scheduled for completion in 2009. Ignition experiments on NIF, which will use tritium, are scheduled to begin in 2010. Tritium will arrive at the facility in individual target assemblies. The assemblies will be mounted to the Cryogenic TARget POSitioner (TARPOS), which provides the cryogenic cooling systems necessary to complete the formation of the ignition target's fuel ice layer. It also provides the positioning system that transports and holds the target at the center of the NIF chamber during a shot. After a shot, unburned tritium will be captured by the cryopumps. Upon regeneration, the cryopump effluent will be directed to the Tritium Processing System, part of NIF's. Personnel and Environmental Protection Systems. These systems also include, local contamination control systems, area and stack tritium monitoring systems, a decontamination area, and waste packaging and characterization capability. This equipment will be used along with standard contamination control practices to manage the tritium hazard to workers and to limit releases to the environment to negligibly small amounts.

IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY.

IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Book Description
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed and has high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments to be conducted by the academic community is planned for summer 2009. This paper summarizes the design, performance, and status of NIF, experimental plans for NIC, and will present a brief discussion of the unparalleled opportunities to explore frontier basic science that will be available on the NIF.