Ignition and Flame Stabilization in N-Dodecane Turbulent Premixed Flames at Compression Ignition Engine Conditions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Ignition and Flame Stabilization in N-Dodecane Turbulent Premixed Flames at Compression Ignition Engine Conditions PDF full book. Access full book title Ignition and Flame Stabilization in N-Dodecane Turbulent Premixed Flames at Compression Ignition Engine Conditions by Samyar Farjam. Download full books in PDF and EPUB format.

Ignition and Flame Stabilization in N-Dodecane Turbulent Premixed Flames at Compression Ignition Engine Conditions

Ignition and Flame Stabilization in N-Dodecane Turbulent Premixed Flames at Compression Ignition Engine Conditions PDF Author: Samyar Farjam
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Controlling ignition timing and flame stabilization is one of the most outstanding challenges limiting the development of modern, efficient and low-emission compression ignition engines (CIEs). In this study, the role of turbulence on two-stage ignition dynamics and subsequent flame stabilization at diesel engine conditions is assessed by performing direct numerical simulations in a simplified inflow-outflow premixed configuration. The thermochemical conditions are chosen to match those of the most reactive mixture in the Engine Combustion Network's n-dodecane Spray A flame (temperature of 813 K, pressure of 60 atm, equivalence ratio of 1.3, and with 15% vol. O2 in the ambient gas). Inflow velocities 4 to 16 times larger than the laminar flame speed are considered. As a result, in the absence of turbulence, ignition and flame stabilization are controlled by advection and chemistry, diffusion being negligible. Ignition delays match those of the homogeneous reactor and both the cool flame, due to low-temperature chemistry (LTC), and the hot flame, due to high-temperature chemistry (HTC), are spontaneous ignition fronts. Turbulence alters this picture in two ways. First, the second-stage (HTC) ignition delay is increased considerably, in contrast with the first-stage (LTC) ignition delay, which remains virtually unaffected. Second, a sufficiently high turbulence intensity makes the cool spontaneous ignition front transition to a cool deflagration which moves upstream to the inlet, while the hot flame is pushed downstream, still stabilized by spontaneous ignition. The latter phenomenon is caused by the reduced reactivity of LTC products as the cool flame transitions from spontaneous ignition to deflagration. Further increasing the turbulence intensity leads to both cool and hot flames transitioning to deflagrations. For the hot flame, the mechanism governing this transition is the increase in magnitude of progress variable gradient under increased turbulence or reduced inflow velocity, while in cool flames it is mainly due to the reduction in chemical source terms. In addition to turbulence intensity, the role of inflow velocity, integral length scale, and oxygen concentration level on this transition is assessed and modeling challenges are discussed. Finally, a chemical explosive mode analysis is provided to further characterise the ignition and transition phenomena. The present results highlight important fundamental roles of turbulence expected to modulate CIE combustion dynamics.

Ignition and Flame Stabilization in N-Dodecane Turbulent Premixed Flames at Compression Ignition Engine Conditions

Ignition and Flame Stabilization in N-Dodecane Turbulent Premixed Flames at Compression Ignition Engine Conditions PDF Author: Samyar Farjam
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Controlling ignition timing and flame stabilization is one of the most outstanding challenges limiting the development of modern, efficient and low-emission compression ignition engines (CIEs). In this study, the role of turbulence on two-stage ignition dynamics and subsequent flame stabilization at diesel engine conditions is assessed by performing direct numerical simulations in a simplified inflow-outflow premixed configuration. The thermochemical conditions are chosen to match those of the most reactive mixture in the Engine Combustion Network's n-dodecane Spray A flame (temperature of 813 K, pressure of 60 atm, equivalence ratio of 1.3, and with 15% vol. O2 in the ambient gas). Inflow velocities 4 to 16 times larger than the laminar flame speed are considered. As a result, in the absence of turbulence, ignition and flame stabilization are controlled by advection and chemistry, diffusion being negligible. Ignition delays match those of the homogeneous reactor and both the cool flame, due to low-temperature chemistry (LTC), and the hot flame, due to high-temperature chemistry (HTC), are spontaneous ignition fronts. Turbulence alters this picture in two ways. First, the second-stage (HTC) ignition delay is increased considerably, in contrast with the first-stage (LTC) ignition delay, which remains virtually unaffected. Second, a sufficiently high turbulence intensity makes the cool spontaneous ignition front transition to a cool deflagration which moves upstream to the inlet, while the hot flame is pushed downstream, still stabilized by spontaneous ignition. The latter phenomenon is caused by the reduced reactivity of LTC products as the cool flame transitions from spontaneous ignition to deflagration. Further increasing the turbulence intensity leads to both cool and hot flames transitioning to deflagrations. For the hot flame, the mechanism governing this transition is the increase in magnitude of progress variable gradient under increased turbulence or reduced inflow velocity, while in cool flames it is mainly due to the reduction in chemical source terms. In addition to turbulence intensity, the role of inflow velocity, integral length scale, and oxygen concentration level on this transition is assessed and modeling challenges are discussed. Finally, a chemical explosive mode analysis is provided to further characterise the ignition and transition phenomena. The present results highlight important fundamental roles of turbulence expected to modulate CIE combustion dynamics.

Turbulent Premixed Flames

Turbulent Premixed Flames PDF Author: Nedunchezhian Swaminathan
Publisher: Cambridge University Press
ISBN: 1139498584
Category : Technology & Engineering
Languages : en
Pages : 447

Book Description
A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Stabilization and Dynamic of Premixed Swirling Flames

Stabilization and Dynamic of Premixed Swirling Flames PDF Author: Paul Palies
Publisher: Academic Press
ISBN: 0128199970
Category : Technology & Engineering
Languages : en
Pages : 402

Book Description
Stabilization and Dynamic of Premixed Swirling Flames: Prevaporized, Stratified, Partially, and Fully Premixed Regimes focuses on swirling flames in various premixed modes (stratified, partially, fully, prevaporized) for the combustor, and development and design of current and future swirl-stabilized combustion systems. This includes predicting capabilities, modeling of turbulent combustion, liquid fuel modeling, and a complete overview of stabilization of these flames in aeroengines. The book also discusses the effects of the operating envelope on upstream fresh gases and the subsequent impact of flame speed, combustion, and mixing, the theoretical framework for flame stabilization, and fully lean premixed injector design. Specific attention is paid to ground gas turbine applications, and a comprehensive review of stabilization mechanisms for premixed, partially-premixed, and stratified premixed flames. The last chapter covers the design of a fully premixed injector for future jet engine applications. Features a complete view of the challenges at the intersection of swirling flame combustors, their requirements, and the physics of fluids at work Addresses the challenges of turbulent combustion modeling with numerical simulations Includes the presentation of the very latest numerical results and analyses of flashback, lean blowout, and combustion instabilities Covers the design of a fully premixed injector for future jet engine applications

Turbulent Spray Combustion Modeling Using Direct Integration of Chemistry and Flamelet Generated Manifolds

Turbulent Spray Combustion Modeling Using Direct Integration of Chemistry and Flamelet Generated Manifolds PDF Author: Ashraya Goyal
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 75

Book Description
Turbulent spray combustion of n-dodecane was modeled at engine relevant conditions using various combustion models (Direct Integration of Chemistry and Flamelet Generated Manifolds) and turbulence models (Dynamic Structure Large Eddy Simulation and RNG Reynolds-Averaged Naiver-Stokes). A recently developed n-dodecane mechanism was utilized and the turbulent spray was simulated at various combustion chamber initial gas temperature and pressure conditions. Mesh with size of 31 microns was utilized to resolve small eddies around the spray. The pressure-based ignition delay, flame lift-off length, and spray and jet penetrations were studied and compared with experimental measurements. The Direct Integration of Chemistry and Flamelet Generated Manifolds using various turbulence models are in agreement with measured data.

Combustion Phenomena

Combustion Phenomena PDF Author: Jozef Jarosinski
Publisher: CRC Press
ISBN: 0849384095
Category : Science
Languages : en
Pages : 236

Book Description
Extensively using experimental and numerical illustrations, CombustionPhenomena: Selected Mechanisms of Flame Formation, Propagation, and Extinction provides a comprehensive survey of the fundamental processes of flame formation, propagation, and extinction. Taking you through the stages of combustion, leading experts visually display, mathematically explain, and clearly theorize on important physical topics of combustion. After a historical introduction to the field, they discuss combustion chemistry, flammability limits, and spark ignition. They also study counterflow twin-flame configuration, flame in a vortex core, the propagation characteristics of edge flames, instabilities, and tulip flames. In addition, the book describes flame extinction in narrow channels, global quenching of premixed flames by turbulence, counterflow premixed flame extinction limits, the interaction of flames with fluids in rotating vessels, and turbulent flames. The final chapter explores diffusion flames as well as combustion in spark- and compression-ignition engines. It also examines the transition from deflagration to detonation, along with the detonation wave structure. With downloadable resources of images that beautifully illustrate a range of combustion phenomena, this book facilitates a practical understanding of the processes occurring in the conception, spread, and extinguishment of a flame. It will help you on your way to finding solutions to real issues encountered in transportation, power generation, industrial processes, chemical engineering, and fire and explosion hazards.

Fundamentals of Premixed Turbulent Combustion

Fundamentals of Premixed Turbulent Combustion PDF Author: Andrei Lipatnikov
Publisher: CRC Press
ISBN: 1466510250
Category : Science
Languages : en
Pages : 548

Book Description
Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling

Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines

Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines PDF Author: Hongsheng Guo
Publisher: Frontiers Media SA
ISBN: 2889666212
Category : Technology & Engineering
Languages : en
Pages : 125

Book Description


Autoignition Dynamics and Combustion of N-Dodecane Droplets Under Transcritical Conditions

Autoignition Dynamics and Combustion of N-Dodecane Droplets Under Transcritical Conditions PDF Author: Evan Noah Rose
Publisher:
ISBN:
Category : Liquid fuels
Languages : en
Pages : 140

Book Description
Understanding the spontaneous ignition and burning behavior of liquid fuels is critical to improving the performance of modern combustion devices. This work examines the effects of varying ambient temperature and pressure on the autoignition and burning characteristics of fiber-supported n-dodecane fuel droplets in normal gravity and in microgravity. Ambient temperatures and pressures were 500 to 1000 K and 1 to 25 atm, respectively, encompassing the transcritical region for n-dodecane. The results show the dynamics of ignition with the formation of a cool-flame front and a hot-flame front prior to the final establishment of a diffusion flame surrounding the droplet. These phenomena are observed for both normal gravity and microgravity environments. Measurement of two-stage ignition delay times shows qualitative agreement with previous research.

Advanced Thermodynamics for Engineers

Advanced Thermodynamics for Engineers PDF Author: D. Winterbone
Publisher: Butterworth-Heinemann
ISBN: 0080523366
Category : Science
Languages : en
Pages : 399

Book Description
Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.

Turbulent Combustion

Turbulent Combustion PDF Author: Norbert Peters
Publisher: Cambridge University Press
ISBN: 1139428063
Category : Science
Languages : en
Pages : 322

Book Description
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.