Identifying "at-risk" Regions of Snow Accumulation Within California's Sierra Nevada Mountains, and Assessing Implications on Reservoir Operations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Identifying "at-risk" Regions of Snow Accumulation Within California's Sierra Nevada Mountains, and Assessing Implications on Reservoir Operations PDF full book. Access full book title Identifying "at-risk" Regions of Snow Accumulation Within California's Sierra Nevada Mountains, and Assessing Implications on Reservoir Operations by Imtiaz-Ali M. Kalyan. Download full books in PDF and EPUB format.

Identifying "at-risk" Regions of Snow Accumulation Within California's Sierra Nevada Mountains, and Assessing Implications on Reservoir Operations

Identifying Author: Imtiaz-Ali M. Kalyan
Publisher:
ISBN:
Category : Climatic changes
Languages : en
Pages : 130

Book Description
California's water resources vary throughout the state owing to the regions varying topography, diverse climate, and the distribution of precipitation. Most of the state's precipitation falls over the northern coastal range and the western slopes of the Sierra Nevada Mountains. Winter snowpack that accumulates within these mountain basins serves as an efficient means of natural water storage. Moreover, the state's two massive water conveyance systems, the State Water Project (SWP) and the Central Valley Project (CVP), are integrally dependent upon winter snowpack accumulation, and subsequent spring snowmelt runoff. The SWP and CVP's extensive network of reservoirs, pipes, and aqueducts are engineered to collect and transport water from the snowcapped Sierra Nevada Mountains where it is plentiful, to farmland and urban communities where it is scarce but in greatest demand. However, increased warming within these mountain basins is causing a declined winter snowpack, altering the fraction of precipitation occurring as snow, and changing the timing of snowmelt derived streamflow. The loss of this immense amount of naturally occurring stored water, and its earlier arrival at the downstream reservoirs, has profound implications on the state's existing water management infrastructure. This work attempts to address these water management challenges that lie in the foreseeable future. Using a binary based deterministic approach, and a climatologically record of temperature and precipitation, "at-risk" snow dominated regions were identified throughout the Feather River Basin, and nested basins of the San Joaquin Watershed. These "at-risk" regions represent locations that would be the first to transition from a snow dominated, to a rain dominated precipitation regime under projected future warming scenarios. Future warming projections ranging from 1°C to 4°C were analyzed relative to the 1971-2000 base period. Results show that if warming trends considered by the IPCC 2007 report to be highly likely continue, nearly all snow dominated regions existing between 1500 and 2100 m in the San Joaquin Watershed would become rainfall dominated. Within the Feather River Basin, in the Sacramento Watershed, implications are even more alarming. A 3°C warming in February would result in approximately 87% of the regions previously snow covered area (SCA) becoming rainfall dominated; only 12% of the basin would remain snow covered. The decline of winter snowpack within all six study basins is closely correlated with elevation and average winter temperatures. Lower elevation, snow dominated regions near the rain to snow transition zone are highly sensitive to warmer temperatures relative to higher elevation, colder snow dominated regions. Furthermore, warming during high precipitation months, from December to February, would yield the largest reductions in loss of Snow Water Equivalent (or SWE). The loss of this immense amount of naturally occurring stored water, and its earlier arrival at the downstream reservoirs poses challenges and opportunities for California's water managers. For reservoir managers, adapting to a rapidly changing climate would require updating rigid flood control rule curves that were established based on hydrological trends during the first half of the twentieth century. Developing greater flexibility into flood-control rule curves could allow reservoir managers to store more water in the winter, thereby mitigating the consequences of snow loss from natural stored water sources. Faced with an expanding population and increased strains on water resources availability, sustaining future water demands hinges on developing adaptive water management strategies. By understanding basin and, at a finer scale, elevation specific vulnerability to snow loss due to warming, water managers can begin to guide effectual adaptation strategies.

Identifying "at-risk" Regions of Snow Accumulation Within California's Sierra Nevada Mountains, and Assessing Implications on Reservoir Operations

Identifying Author: Imtiaz-Ali M. Kalyan
Publisher:
ISBN:
Category : Climatic changes
Languages : en
Pages : 130

Book Description
California's water resources vary throughout the state owing to the regions varying topography, diverse climate, and the distribution of precipitation. Most of the state's precipitation falls over the northern coastal range and the western slopes of the Sierra Nevada Mountains. Winter snowpack that accumulates within these mountain basins serves as an efficient means of natural water storage. Moreover, the state's two massive water conveyance systems, the State Water Project (SWP) and the Central Valley Project (CVP), are integrally dependent upon winter snowpack accumulation, and subsequent spring snowmelt runoff. The SWP and CVP's extensive network of reservoirs, pipes, and aqueducts are engineered to collect and transport water from the snowcapped Sierra Nevada Mountains where it is plentiful, to farmland and urban communities where it is scarce but in greatest demand. However, increased warming within these mountain basins is causing a declined winter snowpack, altering the fraction of precipitation occurring as snow, and changing the timing of snowmelt derived streamflow. The loss of this immense amount of naturally occurring stored water, and its earlier arrival at the downstream reservoirs, has profound implications on the state's existing water management infrastructure. This work attempts to address these water management challenges that lie in the foreseeable future. Using a binary based deterministic approach, and a climatologically record of temperature and precipitation, "at-risk" snow dominated regions were identified throughout the Feather River Basin, and nested basins of the San Joaquin Watershed. These "at-risk" regions represent locations that would be the first to transition from a snow dominated, to a rain dominated precipitation regime under projected future warming scenarios. Future warming projections ranging from 1°C to 4°C were analyzed relative to the 1971-2000 base period. Results show that if warming trends considered by the IPCC 2007 report to be highly likely continue, nearly all snow dominated regions existing between 1500 and 2100 m in the San Joaquin Watershed would become rainfall dominated. Within the Feather River Basin, in the Sacramento Watershed, implications are even more alarming. A 3°C warming in February would result in approximately 87% of the regions previously snow covered area (SCA) becoming rainfall dominated; only 12% of the basin would remain snow covered. The decline of winter snowpack within all six study basins is closely correlated with elevation and average winter temperatures. Lower elevation, snow dominated regions near the rain to snow transition zone are highly sensitive to warmer temperatures relative to higher elevation, colder snow dominated regions. Furthermore, warming during high precipitation months, from December to February, would yield the largest reductions in loss of Snow Water Equivalent (or SWE). The loss of this immense amount of naturally occurring stored water, and its earlier arrival at the downstream reservoirs poses challenges and opportunities for California's water managers. For reservoir managers, adapting to a rapidly changing climate would require updating rigid flood control rule curves that were established based on hydrological trends during the first half of the twentieth century. Developing greater flexibility into flood-control rule curves could allow reservoir managers to store more water in the winter, thereby mitigating the consequences of snow loss from natural stored water sources. Faced with an expanding population and increased strains on water resources availability, sustaining future water demands hinges on developing adaptive water management strategies. By understanding basin and, at a finer scale, elevation specific vulnerability to snow loss due to warming, water managers can begin to guide effectual adaptation strategies.

Investigations Recommended for Assessing the Environmental Impact of Snow Augmentation in the Sierra Nevada, California

Investigations Recommended for Assessing the Environmental Impact of Snow Augmentation in the Sierra Nevada, California PDF Author: Charles F. Cooper
Publisher:
ISBN:
Category : Sierra Nevada (Calif. and Nev.)
Languages : en
Pages : 94

Book Description


Snow Distribution Over an Elevation Gradient and Forest Snow Hydrology of the Southern Sierra Nevada, California

Snow Distribution Over an Elevation Gradient and Forest Snow Hydrology of the Southern Sierra Nevada, California PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 332

Book Description
The Mountain West region of the United States is highly dependent on ecosystem services from the mountain snowpack, one of the most vulnerable components of earth's fresh water cycle. The growing demand for fresh water in a period of climatic non-stationarity requires new approaches to monitoring and prediction. We investigate snow distribution and its effect on subsurface water storage in the southern Sierra Nevada, California using the combination of in-situ measurements, airborne LiDAR-snow-depth altimetry, satellite snow-cover maps, and novel spatial analysis. Using these data and methods we address questions about the mountain snowpack pertaining to: i) broad-scale distribution of snow accumulation governed by elevation and topography, ii) the effects of forest canopy on snow accumulation and ablation, at multiple scales, and iii) the partitioning of water in the vadose zone after snowmelt. Our results show that snow depth as a function of elevation increased at a rate of approximately 15 cm 100 m-1 until reaching an elevation of 3300 m where depth sharply decreased at a rate of 48 cm 100 m-1. Departures from this trend were mostly negative below 2050 m, mostly positive between 2050-3300 m and negative above 3300 m, and attributed to orographic processes, mean freezing level, slope, terrain orientation and wind redistribution. High point-density LiDAR measured 31-44% of under-canopy area, where snow depth was12- 24% lower than in the open, depending on forest vegetation type. The metrics of mean canopy height, canopy-to-ground surface ratio, fractional canopy cover, and canopy- height standard deviation individually explained half 45-58% of the storm accumulation variability. Sky view factor explained up to 87% of the variability in snow ablation rates in the cloudiest snow-melt seasons and direct beam solar irradiance explained up to 58% in the clearest. The timing of soil dry-down is relatively uniform, but due to the heterogeneity of snowmelt it's timing is offset by up to 4 weeks at the same elevation depending on location. Baseflow and evapotranspiration continue after soil dry down has reached a plateau, suggesting that water is drawn from soil saprolite and saprock at depths>1 m below the surface.

Managing California's Snow Zone Lands for Water

Managing California's Snow Zone Lands for Water PDF Author: Henry Walter Anderson
Publisher:
ISBN:
Category : Meltwater
Languages : en
Pages : 36

Book Description


Snow Sensor Evaluation in the Sierra Nevada, California

Snow Sensor Evaluation in the Sierra Nevada, California PDF Author: California. Department of Water Resources. Division of Planning
Publisher:
ISBN:
Category : Precipitation (Meteorology)
Languages : en
Pages : 76

Book Description


Snow Cover and Climate in the Sierra Nevada, California

Snow Cover and Climate in the Sierra Nevada, California PDF Author: David Hewitt Miller
Publisher:
ISBN:
Category : Climatology
Languages : en
Pages : 236

Book Description


Atmospheric Rivers

Atmospheric Rivers PDF Author: F. Martin Ralph
Publisher: Springer Nature
ISBN: 3030289060
Category : Science
Languages : en
Pages : 284

Book Description
This book is the standard reference based on roughly 20 years of research on atmospheric rivers, emphasizing progress made on key research and applications questions and remaining knowledge gaps. The book presents the history of atmospheric-rivers research, the current state of scientific knowledge, tools, and policy-relevant (science-informed) problems that lend themselves to real-world application of the research—and how the topic fits into larger national and global contexts. This book is written by a global team of authors who have conducted and published the majority of critical research on atmospheric rivers over the past years. The book is intended to benefit practitioners in the fields of meteorology, hydrology and related disciplines, including students as well as senior researchers.

Observed Changes in the Sierra Nevada Snowpack

Observed Changes in the Sierra Nevada Snowpack PDF Author:
Publisher:
ISBN:
Category : California
Languages : en
Pages : 28

Book Description


Snow, Snowmelt, Rain, Runoff, and Chemistry in a Sierra Nevada Watershed

Snow, Snowmelt, Rain, Runoff, and Chemistry in a Sierra Nevada Watershed PDF Author: Jeff Dozier
Publisher:
ISBN:
Category : Acid deposition
Languages : en
Pages : 300

Book Description


Snow Accumulation as Related to Meteorological, Topographic, and Forest Variables in Central Sierra Nevada, California

Snow Accumulation as Related to Meteorological, Topographic, and Forest Variables in Central Sierra Nevada, California PDF Author: Henry W. Anderson
Publisher:
ISBN:
Category : Sierra Nevada (Calif. and Nev.)
Languages : en
Pages : 224

Book Description