Author: Yingfang Zhu
Publisher: Frontiers Media SA
ISBN: 2832507182
Category : Science
Languages : en
Pages : 210
Book Description
Molecular and Genetic Perspectives of Cold Tolerance in Plants
Author: Yingfang Zhu
Publisher: Frontiers Media SA
ISBN: 2832507182
Category : Science
Languages : en
Pages : 210
Book Description
Publisher: Frontiers Media SA
ISBN: 2832507182
Category : Science
Languages : en
Pages : 210
Book Description
Omics and Plant Abiotic Stress Tolerance
Author: Narenda Tuteja
Publisher: Bentham Science Publishers
ISBN: 1608050580
Category : Science
Languages : en
Pages : 185
Book Description
"Multiple biotic and abiotic environmental factors may constitute stresses that affect plant growth and yield in crop species. Advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to stres"
Publisher: Bentham Science Publishers
ISBN: 1608050580
Category : Science
Languages : en
Pages : 185
Book Description
"Multiple biotic and abiotic environmental factors may constitute stresses that affect plant growth and yield in crop species. Advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to stres"
Model organisms in plant science: Maize
Author: Ana Butron
Publisher: Frontiers Media SA
ISBN: 2832517463
Category : Science
Languages : en
Pages : 121
Book Description
Publisher: Frontiers Media SA
ISBN: 2832517463
Category : Science
Languages : en
Pages : 121
Book Description
Quantitative Genetics in Maize Breeding
Author: Arnel R. Hallauer
Publisher: Springer Science & Business Media
ISBN: 1441907661
Category : Science
Languages : en
Pages : 669
Book Description
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm
Publisher: Springer Science & Business Media
ISBN: 1441907661
Category : Science
Languages : en
Pages : 669
Book Description
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm
Developing Climate-Resilient Crops
Author: Shah Fahad
Publisher: CRC Press
ISBN: 1000380963
Category : Science
Languages : en
Pages : 273
Book Description
Developing Climate-Resilient Crops: Improving Global Food Security and Safety is timely, as the world is gradually waking up to the fact that a global food crisis of enormous proportions is brewing. Climate change is creating immense problems for agricultural productivity worldwide, resulting in higher food prices. This book elucidates the causative aspects of climate modification related to agriculture, soil, and plants, and discusses the relevant resulting mitigation process and also how new tools and resources can be used to develop climate-resilient crops. Features: Addresses the limits of the anthropogenic global warming theory advocated by the Intergovernmental Panel on Climate Change Presents the main characters (drought tolerance, heat tolerance, water-use efficiency, disease resistance, nitrogen-use efficiency, nitrogen fixation, and carbon sequestration) necessary for climate-resilient agriculture Delivers both theoretical and practical aspects, and serves as baseline information for future research Provides valuable resource for those students engaged in the field of environmental sciences, soil sciences, agricultural microbiology, plant pathology, and agronomy Highlights factors that are threatening future food production
Publisher: CRC Press
ISBN: 1000380963
Category : Science
Languages : en
Pages : 273
Book Description
Developing Climate-Resilient Crops: Improving Global Food Security and Safety is timely, as the world is gradually waking up to the fact that a global food crisis of enormous proportions is brewing. Climate change is creating immense problems for agricultural productivity worldwide, resulting in higher food prices. This book elucidates the causative aspects of climate modification related to agriculture, soil, and plants, and discusses the relevant resulting mitigation process and also how new tools and resources can be used to develop climate-resilient crops. Features: Addresses the limits of the anthropogenic global warming theory advocated by the Intergovernmental Panel on Climate Change Presents the main characters (drought tolerance, heat tolerance, water-use efficiency, disease resistance, nitrogen-use efficiency, nitrogen fixation, and carbon sequestration) necessary for climate-resilient agriculture Delivers both theoretical and practical aspects, and serves as baseline information for future research Provides valuable resource for those students engaged in the field of environmental sciences, soil sciences, agricultural microbiology, plant pathology, and agronomy Highlights factors that are threatening future food production
Maize Germplasm
Author: Mohamed A. El-Esawi
Publisher: BoD – Books on Demand
ISBN: 1789230381
Category : Science
Languages : en
Pages : 102
Book Description
Maize is an important staple food crop worldwide. It is the third most important cereal crop after wheat and rice and is economically used for both livestock feeds and human consumption. The latest maize research has opened up new opportunities for crop improvement. This book brings together recent work and advances that have recently been made in the dynamic fields of genetic characterization, molecular breeding, genetic engineering technologies, and mapping of agronomic traits of global maize germplasm. It also provides new insights into and sheds new light regarding the current research trends and future research directions in maize. This book will provoke interest in many readers, researchers, and scientists, who can find this information useful for the advancement of their research works toward maize improvement.
Publisher: BoD – Books on Demand
ISBN: 1789230381
Category : Science
Languages : en
Pages : 102
Book Description
Maize is an important staple food crop worldwide. It is the third most important cereal crop after wheat and rice and is economically used for both livestock feeds and human consumption. The latest maize research has opened up new opportunities for crop improvement. This book brings together recent work and advances that have recently been made in the dynamic fields of genetic characterization, molecular breeding, genetic engineering technologies, and mapping of agronomic traits of global maize germplasm. It also provides new insights into and sheds new light regarding the current research trends and future research directions in maize. This book will provoke interest in many readers, researchers, and scientists, who can find this information useful for the advancement of their research works toward maize improvement.
Biometrical genetics
Author: Kenneth Mather
Publisher: Springer
ISBN: 1489934049
Category : Science
Languages : en
Pages : 394
Book Description
The properties of continuous variation are basic to the theory of evolution and to the practice of plant and animal improvement. Yet the genetical study of continuous variation has lagged far behind that of discontinuous variation. The reason for this situation is basically methodological. Mendel gave us not merely his principles of heredity, but also a method of experiment by which these principles could be tested over a wider range of living species, and extended into the elaborate genetical theory of today. The power of this tool is well attested by the speed with which genetics has grown. In less than fifty years, it has not only developed a theoretical structure which is unique in the biological sciences, but has established a union with nuclear cytology so close that the two have become virtually a single science offering us a new approach to problems so diverse as those of evolution, development, disease, cellular chemistry and human welfare. Much of this progress would have been impossible and all would have been slower without the Mendelian method of recognizing and using unit differences in the genetic materials.
Publisher: Springer
ISBN: 1489934049
Category : Science
Languages : en
Pages : 394
Book Description
The properties of continuous variation are basic to the theory of evolution and to the practice of plant and animal improvement. Yet the genetical study of continuous variation has lagged far behind that of discontinuous variation. The reason for this situation is basically methodological. Mendel gave us not merely his principles of heredity, but also a method of experiment by which these principles could be tested over a wider range of living species, and extended into the elaborate genetical theory of today. The power of this tool is well attested by the speed with which genetics has grown. In less than fifty years, it has not only developed a theoretical structure which is unique in the biological sciences, but has established a union with nuclear cytology so close that the two have become virtually a single science offering us a new approach to problems so diverse as those of evolution, development, disease, cellular chemistry and human welfare. Much of this progress would have been impossible and all would have been slower without the Mendelian method of recognizing and using unit differences in the genetic materials.
Maydica
Author:
Publisher:
ISBN:
Category : Corn
Languages : en
Pages : 338
Book Description
Journal devoted to maize and allied species.
Publisher:
ISBN:
Category : Corn
Languages : en
Pages : 338
Book Description
Journal devoted to maize and allied species.
Seed Dormancy, Germination and Pre-Harvest Sprouting
Author: Chengdao Li
Publisher: Frontiers Media SA
ISBN: 2889457621
Category :
Languages : en
Pages : 235
Book Description
Pre-harvest sprouting (PHS) and late-maturity alpha-amylase (LMA) are two of the biggest grain quality defects that grain growers encounter. About 50 percent of the global wheat crop is affected by pre-harvest sprouting to various degrees. Pre-harvest sprouting is a genetically-based quality defect and results in the presence of alpha-amylase in otherwise sound mature grain. It can range from perhaps undetectable to severe damage on grain and is measured by the falling numbers or alpha-amylase activity. This is an international issue, with sprouting damage lowering the value of crops to growers, seed and grain merchants, millers, maltsters, bakers, other processors, and ultimately the consumer. As such it has attracted attention from researchers in many biological and non-biological disciplines. The 13th International Symposium on Pre-Harvest Sprouting in Cereals was held 18-20 September, 2016 in Perth to discuss current findings of grain physiology, genetic pathways, trait expression and screening methods related to pre-harvest sprouting and LMA. This event followed the previous symposium in 2012 in Canada.
Publisher: Frontiers Media SA
ISBN: 2889457621
Category :
Languages : en
Pages : 235
Book Description
Pre-harvest sprouting (PHS) and late-maturity alpha-amylase (LMA) are two of the biggest grain quality defects that grain growers encounter. About 50 percent of the global wheat crop is affected by pre-harvest sprouting to various degrees. Pre-harvest sprouting is a genetically-based quality defect and results in the presence of alpha-amylase in otherwise sound mature grain. It can range from perhaps undetectable to severe damage on grain and is measured by the falling numbers or alpha-amylase activity. This is an international issue, with sprouting damage lowering the value of crops to growers, seed and grain merchants, millers, maltsters, bakers, other processors, and ultimately the consumer. As such it has attracted attention from researchers in many biological and non-biological disciplines. The 13th International Symposium on Pre-Harvest Sprouting in Cereals was held 18-20 September, 2016 in Perth to discuss current findings of grain physiology, genetic pathways, trait expression and screening methods related to pre-harvest sprouting and LMA. This event followed the previous symposium in 2012 in Canada.
Genetics and Genomics of High-Altitude Crops
Author: Vijay Gahlaut
Publisher: Springer Nature
ISBN: 9819991757
Category :
Languages : en
Pages : 268
Book Description
Publisher: Springer Nature
ISBN: 9819991757
Category :
Languages : en
Pages : 268
Book Description