Identification of Physical Systems

Identification of Physical Systems PDF Author: Rajamani Doraiswami
Publisher: John Wiley & Sons
ISBN: 1118536495
Category : Technology & Engineering
Languages : en
Pages : 683

Book Description
Identification of a physical system deals with the problem of identifying its mathematical model using the measured input and output data. As the physical system is generally complex, nonlinear, and its input–output data is corrupted noise, there are fundamental theoretical and practical issues that need to be considered. Identification of Physical Systems addresses this need, presenting a systematic, unified approach to the problem of physical system identification and its practical applications. Starting with a least-squares method, the authors develop various schemes to address the issues of accuracy, variation in the operating regimes, closed loop, and interconnected subsystems. Also presented is a non-parametric signal or data-based scheme to identify a means to provide a quick macroscopic picture of the system to complement the precise microscopic picture given by the parametric model-based scheme. Finally, a sequential integration of totally different schemes, such as non-parametric, Kalman filter, and parametric model, is developed to meet the speed and accuracy requirement of mission-critical systems. Key features: Provides a clear understanding of theoretical and practical issues in identification and its applications, enabling the reader to grasp a clear understanding of the theory and apply it to practical problems Offers a self-contained guide by including the background necessary to understand this interdisciplinary subject Includes case studies for the application of identification on physical laboratory scale systems, as well as number of illustrative examples throughout the book Identification of Physical Systems is a comprehensive reference for researchers and practitioners working in this field and is also a useful source of information for graduate students in electrical, computer, biomedical, chemical, and mechanical engineering.

Modeling, Identification and Simulation of Dynamical Systems

Modeling, Identification and Simulation of Dynamical Systems PDF Author: P. P. J. van den Bosch
Publisher: CRC Press
ISBN: 0429605927
Category : Mathematics
Languages : en
Pages : 212

Book Description
This book gives an in-depth introduction to the areas of modeling, identification, simulation, and optimization. These scientific topics play an increasingly dominant part in many engineering areas such as electrotechnology, mechanical engineering, aerospace, and physics. This book represents a unique and concise treatment of the mutual interactions among these topics. Techniques for solving general nonlinear optimization problems as they arise in identification and many synthesis and design methods are detailed. The main points in deriving mathematical models via prior knowledge concerning the physics describing a system are emphasized. Several chapters discuss the identification of black-box models. Simulation is introduced as a numerical tool for calculating time responses of almost any mathematical model. The last chapter covers optimization, a generally applicable tool for formulating and solving many engineering problems.

Multivariable System Identification For Process Control

Multivariable System Identification For Process Control PDF Author: Y. Zhu
Publisher: Elsevier
ISBN: 0080537111
Category : Technology & Engineering
Languages : en
Pages : 373

Book Description
Systems and control theory has experienced significant development in the past few decades. New techniques have emerged which hold enormous potential for industrial applications, and which have therefore also attracted much interest from academic researchers. However, the impact of these developments on the process industries has been limited.The purpose of Multivariable System Identification for Process Control is to bridge the gap between theory and application, and to provide industrial solutions, based on sound scientific theory, to process identification problems. The book is organized in a reader-friendly way, starting with the simplest methods, and then gradually introducing more complex techniques. Thus, the reader is offered clear physical insight without recourse to large amounts of mathematics. Each method is covered in a single chapter or section, and experimental design is explained before any identification algorithms are discussed. The many simulation examples and industrial case studies demonstrate the power and efficiency of process identification, helping to make the theory more applicable. MatlabTM M-files, designed to help the reader to learn identification in a computing environment, are included.

Modeling and Identification of Linear Parameter-Varying Systems

Modeling and Identification of Linear Parameter-Varying Systems PDF Author: Roland Toth
Publisher: Springer Science & Business Media
ISBN: 364213811X
Category : Technology & Engineering
Languages : en
Pages : 337

Book Description
Through the past 20 years, the framework of Linear Parameter-Varying (LPV) systems has become a promising system theoretical approach to h- dle the controlof mildly nonlinear and especially position dependent systems which are common in mechatronic applications and in the process ind- try. The birth of this system class was initiated by the need of engineers to achieve better performance for nonlinear and time-varying dynamics, c- mon in many industrial applications, than what the classical framework of Linear Time-Invariant (LTI) control can provide. However, it was also a p- mary goal to preserve simplicity and “re-use” the powerful LTI results by extending them to the LPV case. The progress continued according to this philosophy and LPV control has become a well established ?eld with many promising applications. Unfortunately, modeling of LPV systems, especially based on measured data (which is called system identi?cation) has seen a limited development sincethebirthoftheframework. Currentlythisbottleneck oftheLPVfra- work is halting the transfer of the LPV theory into industrial use. Without good models that ful?ll the expectations of the users and without the und- standing how these models correspond to the dynamics of the application, it is di?cult to design high performance LPV control solutions. This book aims to bridge the gap between modeling and control by investigating the fundamental questions of LPV modeling and identi?cation. It explores the missing details of the LPV system theory that have hindered the formu- tion of a well established identi?cation framework.

System Identification

System Identification PDF Author: Rik Pintelon
Publisher: John Wiley & Sons
ISBN: 0471660957
Category : Science
Languages : en
Pages : 644

Book Description
Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.

Identification of Dynamic Systems

Identification of Dynamic Systems PDF Author: Rolf Isermann
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705

Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

Identification of Nonlinear Physiological Systems

Identification of Nonlinear Physiological Systems PDF Author: David T. Westwick
Publisher: John Wiley & Sons
ISBN: 9780471274568
Category : Technology & Engineering
Languages : en
Pages : 284

Book Description
Significant advances have been made in the field since the previous classic texts were written. This text brings the available knowledge up to date. * Enables the reader to use a wide variety of nonlinear system identification techniques. * Offers a thorough treatment of the underlying theory. * Provides a MATLAB toolbox containing implementation of the latest identification methods together with an extensive set of problems using realistic data sets.

Principles of System Identification

Principles of System Identification PDF Author: Arun K. Tangirala
Publisher: CRC Press
ISBN: 143989602X
Category : Technology & Engineering
Languages : en
Pages : 908

Book Description
Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397

System Identification

System Identification PDF Author: Karel J. Keesman
Publisher: Springer Science & Business Media
ISBN: 0857295225
Category : Technology & Engineering
Languages : en
Pages : 334

Book Description
System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

Modeling, Identification, and Control for Cyber- Physical Systems Towards Industry 4.0

Modeling, Identification, and Control for Cyber- Physical Systems Towards Industry 4.0 PDF Author: Paolo Mercorelli
Publisher: Elsevier
ISBN: 0323952089
Category : Technology & Engineering
Languages : en
Pages : 486

Book Description
Modeling, Identification, and Control for Cyber-Physical Systems Towards Industry 4.0 studies and analyzes the role of algorithms in identifying and controlling such a system towards Industry 4.0, which is the digital transformation of manufacturing and related industries and value creation processes. This book focuses on the conception and implementation of intelligent algorithms. It will help readers who work on sensors, virtual sensors, actuators and virtual actuators embedded systems, network infrastructures, servers with computing and storage capacity, autonomous computing software, real-time data processing, and database graphical user interfaces wireless networking technologies. Cyber-Physical Systems are network components that coordinate physical actions with each other. These autonomous systems perceive their surroundings using virtual sensors and actively influence them via virtual actuators. Adaptable and continuously evolving, these systems free up skilled workers to perform complex tasks, avoiding productivity loss and re-work. - Provides the new and cutting-edge research and development and a series of guidance procedures for potential applications from academic research to industrial R&D - Focuses on the conception and implementation of intelligent algorithms - Covers a wide spectrum of topics, including sensors, virtual sensors, actuators and virtual actuators embedded systems, network infrastructures, servers with computing and storage capacity, autonomous computing software, real-time data processing, and database graphical user interfaces wireless networking technologies