Author: Rolf Isermann
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Identification of Dynamic Systems
Author: Rolf Isermann
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Identification of Continuous-Time Systems
Author: N.K. Sinha
Publisher: Springer Science & Business Media
ISBN: 9780792313366
Category : Technology & Engineering
Languages : en
Pages : 670
Book Description
In view of the importance of system identification, the International Federation of Automatic Control (IFAC) and the International Federation of Operational Research Societies (IFORS) hold symposia on this topic every three years. Interest in continuous time approaches to system identification has been growing in recent years. This is evident from the fact that the of invited sessions on continuous time systems has increased from one in the 8th number Symposium that was held in Beijing in 1988 to three in the 9th Symposium in Budapest in 1991. It was during the 8th Symposium in August 1988 that the idea of bringing together important results on the topic of Identification of continuous time systems was conceived. Several distinguished colleagues, who were with us in Beijing at that time, encouraged us by promising on the spot to contribute to a comprehensive volume of collective work. Subsequently, we contacted colleagues all over the world, known for their work in this area, with a formal request to contribute to the proposed volume. The response was prompt and overwhelmingly encouraging. We sincerely thank all the authors for their valuable contributions covering various aspects of identification of continuous time systems.
Publisher: Springer Science & Business Media
ISBN: 9780792313366
Category : Technology & Engineering
Languages : en
Pages : 670
Book Description
In view of the importance of system identification, the International Federation of Automatic Control (IFAC) and the International Federation of Operational Research Societies (IFORS) hold symposia on this topic every three years. Interest in continuous time approaches to system identification has been growing in recent years. This is evident from the fact that the of invited sessions on continuous time systems has increased from one in the 8th number Symposium that was held in Beijing in 1988 to three in the 9th Symposium in Budapest in 1991. It was during the 8th Symposium in August 1988 that the idea of bringing together important results on the topic of Identification of continuous time systems was conceived. Several distinguished colleagues, who were with us in Beijing at that time, encouraged us by promising on the spot to contribute to a comprehensive volume of collective work. Subsequently, we contacted colleagues all over the world, known for their work in this area, with a formal request to contribute to the proposed volume. The response was prompt and overwhelmingly encouraging. We sincerely thank all the authors for their valuable contributions covering various aspects of identification of continuous time systems.
Modeling, Identification and Simulation of Dynamical Systems
Author: P. P. J. van den Bosch
Publisher: CRC Press
ISBN: 9780849391811
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
This book gives an in-depth introduction to the areas of modeling, identification, simulation, and optimization. These scientific topics play an increasingly dominant part in many engineering areas such as electrotechnology, mechanical engineering, aerospace, and physics. This book represents a unique and concise treatment of the mutual interactions among these topics. Techniques for solving general nonlinear optimization problems as they arise in identification and many synthesis and design methods are detailed. The main points in deriving mathematical models via prior knowledge concerning the physics describing a system are emphasized. Several chapters discuss the identification of black-box models. Simulation is introduced as a numerical tool for calculating time responses of almost any mathematical model. The last chapter covers optimization, a generally applicable tool for formulating and solving many engineering problems.
Publisher: CRC Press
ISBN: 9780849391811
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
This book gives an in-depth introduction to the areas of modeling, identification, simulation, and optimization. These scientific topics play an increasingly dominant part in many engineering areas such as electrotechnology, mechanical engineering, aerospace, and physics. This book represents a unique and concise treatment of the mutual interactions among these topics. Techniques for solving general nonlinear optimization problems as they arise in identification and many synthesis and design methods are detailed. The main points in deriving mathematical models via prior knowledge concerning the physics describing a system are emphasized. Several chapters discuss the identification of black-box models. Simulation is introduced as a numerical tool for calculating time responses of almost any mathematical model. The last chapter covers optimization, a generally applicable tool for formulating and solving many engineering problems.
Linear Parameter-varying System Identification
Author: Paulo Lopes dos Santos
Publisher: World Scientific
ISBN: 9814355445
Category : Mathematics
Languages : en
Pages : 402
Book Description
This review volume reports the state-of-the-art in Linear Parameter Varying (LPV) system identification. It focuses on the most recent LPV identification methods for both discrete-time and continuous-time models--
Publisher: World Scientific
ISBN: 9814355445
Category : Mathematics
Languages : en
Pages : 402
Book Description
This review volume reports the state-of-the-art in Linear Parameter Varying (LPV) system identification. It focuses on the most recent LPV identification methods for both discrete-time and continuous-time models--
Identification and System Parameter Estimation 1982
Author: G. A. Bekey
Publisher: Elsevier
ISBN: 1483165787
Category : Technology & Engineering
Languages : en
Pages : 869
Book Description
Identification and System Parameter Estimation 1982 covers the proceedings of the Sixth International Federation of Automatic Control (IFAC) Symposium. The book also serves as a tribute to Dr. Naum S. Rajbman. The text covers issues concerning identification and estimation, such as increasing interrelationships between identification/estimation and other aspects of system theory, including control theory, signal processing, experimental design, numerical mathematics, pattern recognition, and information theory. The book also provides coverage regarding the application and problems faced by several engineering and scientific fields that use identification and estimation, such as biological systems, traffic control, geophysics, aeronautics, robotics, economics, and power systems. Researchers from all scientific fields will find this book a great reference material, since it presents topics that concern various disciplines.
Publisher: Elsevier
ISBN: 1483165787
Category : Technology & Engineering
Languages : en
Pages : 869
Book Description
Identification and System Parameter Estimation 1982 covers the proceedings of the Sixth International Federation of Automatic Control (IFAC) Symposium. The book also serves as a tribute to Dr. Naum S. Rajbman. The text covers issues concerning identification and estimation, such as increasing interrelationships between identification/estimation and other aspects of system theory, including control theory, signal processing, experimental design, numerical mathematics, pattern recognition, and information theory. The book also provides coverage regarding the application and problems faced by several engineering and scientific fields that use identification and estimation, such as biological systems, traffic control, geophysics, aeronautics, robotics, economics, and power systems. Researchers from all scientific fields will find this book a great reference material, since it presents topics that concern various disciplines.
System Identification and Adaptive Control
Author: Yiannis Boutalis
Publisher: Springer Science & Business
ISBN: 3319063642
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.
Publisher: Springer Science & Business
ISBN: 3319063642
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.
European Control Conference 1995
Author:
Publisher: European Control Association
ISBN:
Category :
Languages : en
Pages : 652
Book Description
Proceedings of the European Control Conference 1995, Rome, Italy 5-8 September 1995
Publisher: European Control Association
ISBN:
Category :
Languages : en
Pages : 652
Book Description
Proceedings of the European Control Conference 1995, Rome, Italy 5-8 September 1995
Identification of Continuous-time Models from Sampled Data
Author: Hugues Garnier
Publisher: Springer Science & Business Media
ISBN: 1848001614
Category : Technology & Engineering
Languages : en
Pages : 413
Book Description
This is the first book dedicated to direct continuous-time model identification for 15 years. It cuts down on time spent hunting through journals by providing an overview of much recent research in an increasingly busy field. The CONTSID toolbox discussed in the final chapter gives an overview of developments and practical examples in which MATLAB® can be used for direct time-domain identification of continuous-time systems. This is a valuable reference for a broad audience.
Publisher: Springer Science & Business Media
ISBN: 1848001614
Category : Technology & Engineering
Languages : en
Pages : 413
Book Description
This is the first book dedicated to direct continuous-time model identification for 15 years. It cuts down on time spent hunting through journals by providing an overview of much recent research in an increasingly busy field. The CONTSID toolbox discussed in the final chapter gives an overview of developments and practical examples in which MATLAB® can be used for direct time-domain identification of continuous-time systems. This is a valuable reference for a broad audience.
Numerical Data Fitting in Dynamical Systems
Author: Klaus Schittkowski
Publisher: Springer Science & Business Media
ISBN: 9781402010798
Category : Computers
Languages : en
Pages : 416
Book Description
Real life phenomena in engineering, natural, or medical sciences are often described by a mathematical model with the goal to analyze numerically the behaviour of the system. Advantages of mathematical models are their cheap availability, the possibility of studying extreme situations that cannot be handled by experiments, or of simulating real systems during the design phase before constructing a first prototype. Moreover, they serve to verify decisions, to avoid expensive and time consuming experimental tests, to analyze, understand, and explain the behaviour of systems, or to optimize design and production. As soon as a mathematical model contains differential dependencies from an additional parameter, typically the time, we call it a dynamical model. There are two key questions always arising in a practical environment: 1 Is the mathematical model correct? 2 How can I quantify model parameters that cannot be measured directly? In principle, both questions are easily answered as soon as some experimental data are available. The idea is to compare measured data with predicted model function values and to minimize the differences over the whole parameter space. We have to reject a model if we are unable to find a reasonably accurate fit. To summarize, parameter estimation or data fitting, respectively, is extremely important in all practical situations, where a mathematical model and corresponding experimental data are available to describe the behaviour of a dynamical system.
Publisher: Springer Science & Business Media
ISBN: 9781402010798
Category : Computers
Languages : en
Pages : 416
Book Description
Real life phenomena in engineering, natural, or medical sciences are often described by a mathematical model with the goal to analyze numerically the behaviour of the system. Advantages of mathematical models are their cheap availability, the possibility of studying extreme situations that cannot be handled by experiments, or of simulating real systems during the design phase before constructing a first prototype. Moreover, they serve to verify decisions, to avoid expensive and time consuming experimental tests, to analyze, understand, and explain the behaviour of systems, or to optimize design and production. As soon as a mathematical model contains differential dependencies from an additional parameter, typically the time, we call it a dynamical model. There are two key questions always arising in a practical environment: 1 Is the mathematical model correct? 2 How can I quantify model parameters that cannot be measured directly? In principle, both questions are easily answered as soon as some experimental data are available. The idea is to compare measured data with predicted model function values and to minimize the differences over the whole parameter space. We have to reject a model if we are unable to find a reasonably accurate fit. To summarize, parameter estimation or data fitting, respectively, is extremely important in all practical situations, where a mathematical model and corresponding experimental data are available to describe the behaviour of a dynamical system.
Identification of Continuous Systems
Author: Heinz Unbehauen
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 402
Book Description
Bringing together important advances in the field of continuous system identification, this book deals with both parametric and nonparametric methods. It pays special attention to the problem of retaining continuous model parameters in the estimation equations, to which all the existing techniques used in estimating discrete models may be applied. It is aimed at both the academic researcher and the control engineer in industry. The techniques covered range from certain simple numerical or graphical methods applicable to some of the frequently encountered model forms, to attractive recursive algorithms for continuous model identification suitable for real time implementation. These include the recent methods based on orthogonal functions such as those of Walsh and Poisson moment functionals. Some techniques based on stable model adaptation principles are also presented and illustrated.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 402
Book Description
Bringing together important advances in the field of continuous system identification, this book deals with both parametric and nonparametric methods. It pays special attention to the problem of retaining continuous model parameters in the estimation equations, to which all the existing techniques used in estimating discrete models may be applied. It is aimed at both the academic researcher and the control engineer in industry. The techniques covered range from certain simple numerical or graphical methods applicable to some of the frequently encountered model forms, to attractive recursive algorithms for continuous model identification suitable for real time implementation. These include the recent methods based on orthogonal functions such as those of Walsh and Poisson moment functionals. Some techniques based on stable model adaptation principles are also presented and illustrated.