Author: Heinz-Peter Breuer
Publisher: Oxford University Press, USA
ISBN: 9780198520634
Category : Mathematics
Languages : en
Pages : 648
Book Description
This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its role in the dynamical description of the measurement process and to the experimental observation of decohering Schrodinger cat states. The book includes the modern formulation of open quantum systems in terms of stochastic processes in Hilbert space. Stochastic wave function methods and Monte Carlo algorithms are designed and applied to important examples from quantum optics and atomic physics, such as Levy statistics in the laser cooling of atoms, and the damped Jaynes-Cummings model. The basic features of the non-Markovian quantum behaviour of open systems are examined on the basis of projection operator techniques. In addition, the book expounds the relativistic theory of quantum measurements and discusses several examples from a unified perspective, e.g. non-local measurements and quantum teleportation. Influence functional and super-operator techniques are employed to study the density matrix theory in quantum electrodynamics and applications to the destruction of quantum coherence are presented. The text addresses graduate students and lecturers in physics and applied mathematics, as well as researchers with interests in fundamental questions in quantum mechanics and its applications. Many analytical methods and computer simulation techniques are developed and illustrated with the help of numerous specific examples. Only a basic understanding of quantum mechanics and of elementary concepts of probability theory is assumed.
The Theory of Open Quantum Systems
Author: Heinz-Peter Breuer
Publisher: Oxford University Press, USA
ISBN: 9780198520634
Category : Mathematics
Languages : en
Pages : 648
Book Description
This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its role in the dynamical description of the measurement process and to the experimental observation of decohering Schrodinger cat states. The book includes the modern formulation of open quantum systems in terms of stochastic processes in Hilbert space. Stochastic wave function methods and Monte Carlo algorithms are designed and applied to important examples from quantum optics and atomic physics, such as Levy statistics in the laser cooling of atoms, and the damped Jaynes-Cummings model. The basic features of the non-Markovian quantum behaviour of open systems are examined on the basis of projection operator techniques. In addition, the book expounds the relativistic theory of quantum measurements and discusses several examples from a unified perspective, e.g. non-local measurements and quantum teleportation. Influence functional and super-operator techniques are employed to study the density matrix theory in quantum electrodynamics and applications to the destruction of quantum coherence are presented. The text addresses graduate students and lecturers in physics and applied mathematics, as well as researchers with interests in fundamental questions in quantum mechanics and its applications. Many analytical methods and computer simulation techniques are developed and illustrated with the help of numerous specific examples. Only a basic understanding of quantum mechanics and of elementary concepts of probability theory is assumed.
Publisher: Oxford University Press, USA
ISBN: 9780198520634
Category : Mathematics
Languages : en
Pages : 648
Book Description
This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its role in the dynamical description of the measurement process and to the experimental observation of decohering Schrodinger cat states. The book includes the modern formulation of open quantum systems in terms of stochastic processes in Hilbert space. Stochastic wave function methods and Monte Carlo algorithms are designed and applied to important examples from quantum optics and atomic physics, such as Levy statistics in the laser cooling of atoms, and the damped Jaynes-Cummings model. The basic features of the non-Markovian quantum behaviour of open systems are examined on the basis of projection operator techniques. In addition, the book expounds the relativistic theory of quantum measurements and discusses several examples from a unified perspective, e.g. non-local measurements and quantum teleportation. Influence functional and super-operator techniques are employed to study the density matrix theory in quantum electrodynamics and applications to the destruction of quantum coherence are presented. The text addresses graduate students and lecturers in physics and applied mathematics, as well as researchers with interests in fundamental questions in quantum mechanics and its applications. Many analytical methods and computer simulation techniques are developed and illustrated with the help of numerous specific examples. Only a basic understanding of quantum mechanics and of elementary concepts of probability theory is assumed.
Bohmian Mechanics, Open Quantum Systems and Continuous Measurements
Author: Antonio B. Nassar
Publisher: Springer
ISBN: 3319536532
Category : Science
Languages : en
Pages : 255
Book Description
This book shows how Bohmian mechanics overcomes the need for a measurement postulate involving wave function collapse. The measuring process plays a very important role in quantum mechanics. It has been widely analyzed within the Copenhagen approach through the Born and von Neumann postulates, with later extension due to Lüders. In contrast, much less effort has been invested in the measurement theory within the Bohmian mechanics framework. The continuous measurement (sharp and fuzzy, or strong and weak) problem is considered here in this framework. The authors begin by generalizing the so-called Mensky approach, which is based on restricted path integral through quantum corridors. The measuring system is then considered to be an open quantum system following a stochastic Schrödinger equation. Quantum stochastic trajectories (in the Bohmian sense) and their role in basic quantum processes are discussed in detail. The decoherence process is thereby described in terms of classical trajectories issuing from the violation of the noncrossing rule of quantum trajectories.
Publisher: Springer
ISBN: 3319536532
Category : Science
Languages : en
Pages : 255
Book Description
This book shows how Bohmian mechanics overcomes the need for a measurement postulate involving wave function collapse. The measuring process plays a very important role in quantum mechanics. It has been widely analyzed within the Copenhagen approach through the Born and von Neumann postulates, with later extension due to Lüders. In contrast, much less effort has been invested in the measurement theory within the Bohmian mechanics framework. The continuous measurement (sharp and fuzzy, or strong and weak) problem is considered here in this framework. The authors begin by generalizing the so-called Mensky approach, which is based on restricted path integral through quantum corridors. The measuring system is then considered to be an open quantum system following a stochastic Schrödinger equation. Quantum stochastic trajectories (in the Bohmian sense) and their role in basic quantum processes are discussed in detail. The decoherence process is thereby described in terms of classical trajectories issuing from the violation of the noncrossing rule of quantum trajectories.
Quantum Measurement Theory and its Applications
Author: Kurt Jacobs
Publisher: Cambridge University Press
ISBN: 1139992198
Category : Science
Languages : en
Pages : 729
Book Description
Recent experimental advances in the control of quantum superconducting circuits, nano-mechanical resonators and photonic crystals has meant that quantum measurement theory is now an indispensable part of the modelling and design of experimental technologies. This book, aimed at graduate students and researchers in physics, gives a thorough introduction to the basic theory of quantum measurement and many of its important modern applications. Measurement and control is explicitly treated in superconducting circuits and optical and opto-mechanical systems, and methods for deriving the Hamiltonians of superconducting circuits are introduced in detail. Further applications covered include feedback control, metrology, open systems and thermal environments, Maxwell's demon, and the quantum-to-classical transition.
Publisher: Cambridge University Press
ISBN: 1139992198
Category : Science
Languages : en
Pages : 729
Book Description
Recent experimental advances in the control of quantum superconducting circuits, nano-mechanical resonators and photonic crystals has meant that quantum measurement theory is now an indispensable part of the modelling and design of experimental technologies. This book, aimed at graduate students and researchers in physics, gives a thorough introduction to the basic theory of quantum measurement and many of its important modern applications. Measurement and control is explicitly treated in superconducting circuits and optical and opto-mechanical systems, and methods for deriving the Hamiltonians of superconducting circuits are introduced in detail. Further applications covered include feedback control, metrology, open systems and thermal environments, Maxwell's demon, and the quantum-to-classical transition.
Quantum Trajectories and Measurements in Continuous Time
Author: Alberto Barchielli
Publisher: Springer Science & Business Media
ISBN: 3642012973
Category : Mathematics
Languages : en
Pages : 331
Book Description
This course-based monograph introduces the reader to the theory of continuous measurements in quantum mechanics and provides some benchmark applications. The approach chosen, quantum trajectory theory, is based on the stochastic Schrödinger and master equations, which determine the evolution of the a-posteriori state of a continuously observed quantum system and give the distribution of the measurement output. The present introduction is restricted to finite-dimensional quantum systems and diffusive outputs. Two appendices introduce the tools of probability theory and quantum measurement theory which are needed for the theoretical developments in the first part of the book. First, the basic equations of quantum trajectory theory are introduced, with all their mathematical properties, starting from the existence and uniqueness of their solutions. This makes the text also suitable for other applications of the same stochastic differential equations in different fields such as simulations of master equations or dynamical reduction theories. In the next step the equivalence between the stochastic approach and the theory of continuous measurements is demonstrated. To conclude the theoretical exposition, the properties of the output of the continuous measurement are analyzed in detail. This is a stochastic process with its own distribution, and the reader will learn how to compute physical quantities such as its moments and its spectrum. In particular this last concept is introduced with clear and explicit reference to the measurement process. The two-level atom is used as the basic prototype to illustrate the theory in a concrete application. Quantum phenomena appearing in the spectrum of the fluorescence light, such as Mollow’s triplet structure, squeezing of the fluorescence light, and the linewidth narrowing, are presented. Last but not least, the theory of quantum continuous measurements is the natural starting point to develop a feedback control theory in continuous time for quantum systems. The two-level atom is again used to introduce and study an example of feedback based on the observed output.
Publisher: Springer Science & Business Media
ISBN: 3642012973
Category : Mathematics
Languages : en
Pages : 331
Book Description
This course-based monograph introduces the reader to the theory of continuous measurements in quantum mechanics and provides some benchmark applications. The approach chosen, quantum trajectory theory, is based on the stochastic Schrödinger and master equations, which determine the evolution of the a-posteriori state of a continuously observed quantum system and give the distribution of the measurement output. The present introduction is restricted to finite-dimensional quantum systems and diffusive outputs. Two appendices introduce the tools of probability theory and quantum measurement theory which are needed for the theoretical developments in the first part of the book. First, the basic equations of quantum trajectory theory are introduced, with all their mathematical properties, starting from the existence and uniqueness of their solutions. This makes the text also suitable for other applications of the same stochastic differential equations in different fields such as simulations of master equations or dynamical reduction theories. In the next step the equivalence between the stochastic approach and the theory of continuous measurements is demonstrated. To conclude the theoretical exposition, the properties of the output of the continuous measurement are analyzed in detail. This is a stochastic process with its own distribution, and the reader will learn how to compute physical quantities such as its moments and its spectrum. In particular this last concept is introduced with clear and explicit reference to the measurement process. The two-level atom is used as the basic prototype to illustrate the theory in a concrete application. Quantum phenomena appearing in the spectrum of the fluorescence light, such as Mollow’s triplet structure, squeezing of the fluorescence light, and the linewidth narrowing, are presented. Last but not least, the theory of quantum continuous measurements is the natural starting point to develop a feedback control theory in continuous time for quantum systems. The two-level atom is again used to introduce and study an example of feedback based on the observed output.
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 716
Book Description
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 716
Book Description
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.
Quantum Machines: Measurement and Control of Engineered Quantum Systems
Author: Michel Devoret
Publisher: OUP Oxford
ISBN: 0191503177
Category : Science
Languages : en
Pages : 601
Book Description
This book gathers the lecture notes of courses given at the 2011 summer school in theoretical physics in Les Houches, France, Session XCVI. What is a quantum machine? Can we say that lasers and transistors are quantum machines? After all, physicists advertise these devices as the two main spin-offs of the understanding of quantum mechanical phenomena. However, while quantum mechanics must be used to predict the wavelength of a laser and the operation voltage of a transistor, it does not intervene at the level of the signals processed by these systems. Signals involve macroscopic collective variables like voltages and currents in a circuit or the amplitude of the oscillating electric field in an electromagnetic cavity resonator. In a true quantum machine, the signal collective variables, which both inform the outside on the state of the machine and receive controlling instructions, must themselves be treated as quantum operators, just as the position of the electron in a hydrogen atom. Quantum superconducting circuits, quantum dots, and quantum nanomechanical resonators satisfy the definition of quantum machines. These mesoscopic systems exhibit a few collective dynamical variables, whose fluctuations are well in the quantum regime and whose measurement is essentially limited in precision by the Heisenberg uncertainty principle. Other engineered quantum systems based on natural, rather than artificial degrees of freedom can also qualify as quantum machines: trapped ions, single Rydberg atoms in superconducting cavities, and lattices of ultracold atoms. This book provides the basic knowledge needed to understand and investigate the physics of these novel systems.
Publisher: OUP Oxford
ISBN: 0191503177
Category : Science
Languages : en
Pages : 601
Book Description
This book gathers the lecture notes of courses given at the 2011 summer school in theoretical physics in Les Houches, France, Session XCVI. What is a quantum machine? Can we say that lasers and transistors are quantum machines? After all, physicists advertise these devices as the two main spin-offs of the understanding of quantum mechanical phenomena. However, while quantum mechanics must be used to predict the wavelength of a laser and the operation voltage of a transistor, it does not intervene at the level of the signals processed by these systems. Signals involve macroscopic collective variables like voltages and currents in a circuit or the amplitude of the oscillating electric field in an electromagnetic cavity resonator. In a true quantum machine, the signal collective variables, which both inform the outside on the state of the machine and receive controlling instructions, must themselves be treated as quantum operators, just as the position of the electron in a hydrogen atom. Quantum superconducting circuits, quantum dots, and quantum nanomechanical resonators satisfy the definition of quantum machines. These mesoscopic systems exhibit a few collective dynamical variables, whose fluctuations are well in the quantum regime and whose measurement is essentially limited in precision by the Heisenberg uncertainty principle. Other engineered quantum systems based on natural, rather than artificial degrees of freedom can also qualify as quantum machines: trapped ions, single Rydberg atoms in superconducting cavities, and lattices of ultracold atoms. This book provides the basic knowledge needed to understand and investigate the physics of these novel systems.
Quantum Stochastics and Information
Author: V. P. Belavkin
Publisher: World Scientific
ISBN: 9812832963
Category : Science
Languages : en
Pages : 410
Book Description
Quantum stochastic calculus has become an indispensable tool in modern quantum physics, its effectiveness being illustrated by recent developments in quantum control which place the calculus at the heart of the theory. Quantum statistics is rapidly taking shape as an intrinsically quantum counterpart to classical statistics, motivated by advances in quantum engineering and the need for better statistical inference tools for quantum systems.This volume contains a selection of regular research articles and reviews by leading researchers in quantum control, quantum statistics, quantum probability and quantum information. The selection offers a unified view of recent trends in quantum stochastics, highlighting the common mathematical language of Hilbert space operators, and the deep connections between classical and quantum stochastic phenomena.
Publisher: World Scientific
ISBN: 9812832963
Category : Science
Languages : en
Pages : 410
Book Description
Quantum stochastic calculus has become an indispensable tool in modern quantum physics, its effectiveness being illustrated by recent developments in quantum control which place the calculus at the heart of the theory. Quantum statistics is rapidly taking shape as an intrinsically quantum counterpart to classical statistics, motivated by advances in quantum engineering and the need for better statistical inference tools for quantum systems.This volume contains a selection of regular research articles and reviews by leading researchers in quantum control, quantum statistics, quantum probability and quantum information. The selection offers a unified view of recent trends in quantum stochastics, highlighting the common mathematical language of Hilbert space operators, and the deep connections between classical and quantum stochastic phenomena.
Mathematical Feynman Path Integrals And Their Applications (Second Edition)
Author: Sonia Mazzucchi
Publisher: World Scientific
ISBN: 9811214808
Category : Science
Languages : en
Pages : 360
Book Description
Feynman path integrals are ubiquitous in quantum physics, even if a large part of the scientific community still considers them as a heuristic tool that lacks a sound mathematical definition. Our book aims to refute this prejudice, providing an extensive and self-contained description of the mathematical theory of Feynman path integration, from the earlier attempts to the latest developments, as well as its applications to quantum mechanics.This second edition presents a detailed discussion of the general theory of complex integration on infinite dimensional spaces, providing on one hand a unified view of the various existing approaches to the mathematical construction of Feynman path integrals and on the other hand a connection with the classical theory of stochastic processes. Moreover, new chapters containing recent applications to several dynamical systems have been added.This book bridges between the realms of stochastic analysis and the theory of Feynman path integration. It is accessible to both mathematicians and physicists.
Publisher: World Scientific
ISBN: 9811214808
Category : Science
Languages : en
Pages : 360
Book Description
Feynman path integrals are ubiquitous in quantum physics, even if a large part of the scientific community still considers them as a heuristic tool that lacks a sound mathematical definition. Our book aims to refute this prejudice, providing an extensive and self-contained description of the mathematical theory of Feynman path integration, from the earlier attempts to the latest developments, as well as its applications to quantum mechanics.This second edition presents a detailed discussion of the general theory of complex integration on infinite dimensional spaces, providing on one hand a unified view of the various existing approaches to the mathematical construction of Feynman path integrals and on the other hand a connection with the classical theory of stochastic processes. Moreover, new chapters containing recent applications to several dynamical systems have been added.This book bridges between the realms of stochastic analysis and the theory of Feynman path integration. It is accessible to both mathematicians and physicists.
Control Theory for Physicists
Author: John Bechhoefer
Publisher: Cambridge University Press
ISBN: 1009028499
Category : Science
Languages : en
Pages : 662
Book Description
Control theory, an interdisciplinary concept dealing with the behaviour of dynamical systems, is an important but often overlooked aspect of physics. This is the first broad and complete treatment of the topic tailored for physicists, one which goes from the basics right through to the most recent advances. Simple examples develop a deep understanding and intuition for the systematic principles of control theory, beyond the recipes given in standard engineering-focused texts. Up-to-date coverage of control of networks and complex systems, and a thorough discussion of the fundamental limits of control, including the limitations placed by causality, information theory, and thermodynamics are included. In addition it explores important recent advances in stochastic thermodynamics on the thermodynamic costs of information processing and control. For all students of physics interested in control theory, this classroom-tested, comprehensive approach to the topic with online solutions and further materials delivers both fundamental principles and current developments.
Publisher: Cambridge University Press
ISBN: 1009028499
Category : Science
Languages : en
Pages : 662
Book Description
Control theory, an interdisciplinary concept dealing with the behaviour of dynamical systems, is an important but often overlooked aspect of physics. This is the first broad and complete treatment of the topic tailored for physicists, one which goes from the basics right through to the most recent advances. Simple examples develop a deep understanding and intuition for the systematic principles of control theory, beyond the recipes given in standard engineering-focused texts. Up-to-date coverage of control of networks and complex systems, and a thorough discussion of the fundamental limits of control, including the limitations placed by causality, information theory, and thermodynamics are included. In addition it explores important recent advances in stochastic thermodynamics on the thermodynamic costs of information processing and control. For all students of physics interested in control theory, this classroom-tested, comprehensive approach to the topic with online solutions and further materials delivers both fundamental principles and current developments.
Control of Self-Organizing Nonlinear Systems
Author: Eckehard Schöll
Publisher: Springer
ISBN: 3319280287
Category : Science
Languages : en
Pages : 478
Book Description
The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.
Publisher: Springer
ISBN: 3319280287
Category : Science
Languages : en
Pages : 478
Book Description
The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.